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In a recent contribution to this journal, Paris
suggests a framework which extends positive
mathematical programming (PMP)—a widely
used calibration methodology for agricultural
supply models—to a symmetric positive equi-
librium problem (SPEP). He stresses three
main contributions: (1) The PMP methodol-
ogy is modified to incorporate more than one
observation on production programs; (2) A
solution to the “self-selection problem” with
respect to the choice of crops produced by
each farm is provided; (3) “Limiting inputs”
are no longer considered fixed quantities as in
PMP.

We address several conceptual concerns
with respect to the SPEP methodology and the
presented application. We consider these to be
substantial enough to question Paris’ claim to
present “. . . a general framework of analysis
that is capable of reproducing economic be-
havior in a consistent way . . .” (p. 1049). Our
discussion is structured along Paris’ presenta-
tion: The next three sections represent the core
of the comment and deal with the method-
ology itself. They refer to the three phases
of SPEP: (i) recovery of unknown variable
marginal costs and shadow prices of limited
resources, (ii) use of these results to specify
data constraints and parameter supports for
generalized maximum entropy (GME) estima-
tion of a cost function, and (iii) definition of a
simulation model. Finally, concluding remarks
are made regarding the application of SPEP
to an analysis of the EU Common Agricul-
tural Policy (CAP) based on Italian farm data.
Throughout the comment we use the same
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mathematical notation as Paris and refer to his
equation numbers to facilitate comparison.

Phase 1: Estimation of Marginal Costs

Two alternative ways to recover marginal cost
and shadow prices of limiting inputs are sug-
gested for Phase 1 depending on the number
of limiting inputs:1

The first alternative is equivalent to the typ-
ical PMP procedure. Equations (1)–(4) (or
equations (8)–(10) for the sample LP problem)
maximize overall gross margin, (pn − cn)′xn,
subject to land availability and calibration
constraints restricting the optimal production
quantities to be less than or equal to ob-
served quantities. The model’s solution im-
plies a shadow value of land, yn, that is equal
to the gross margin of the least profitable
of the produced crops per unit of land, i.e.,
equal to min j [(pjRn − cjRn)/ajRn]. For all ob-
served cropping activities, the shadow values
of the calibration constraints, � jn, are equal
to pjn − cjn − yn · ajn.2 Consequently, the values
required in Phase 2 can be calculated analyti-
cally as long as only one limiting input exists.
More importantly, “the marginal cost of lim-
iting inputs, (A′

Rnyn) and (A′
NRnyn), and the

variable marginal cost associated with out-
put levels, (�Rn + cRn) and (�NRn + cNRn),”
(p. 1051) are arbitrary outcomes with poten-
tially significant influence on parameter esti-
mates in Phase 2 through the data constraints
(25)–(28). We consider them “arbitrary” in
the sense that the combination of variable
marginal cost and shadow prices is implied by
this form of linear programming model, which
is different from the ultimate simulation model
used in Phase 3. Thus, other optimization

1 In the article, the “extension of SPEP to several limiting inputs”
is actually given under Phase 2, but since the presented equilibrium
problem is supposed to replace models (1)–(4) of Phase 1 we in-
clude it in this section.

2 This implies a zero value of �jRn for the least profitable crop.
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models exist that imply different shadow prices
and variable marginal cost, for example, Paris’
own alternative suggestion for Phase 1.3

The alternative for Phase 1 suggested by
Paris is described by equations (36)–(45) and
motivated as an “extension of SPEP to several
limiting inputs” (p. 1054). It can be easily veri-
fied that this “equilibrium problem” is nothing
but the Karush-Kuhn-Tucker conditions of the
following maximization problem:

max
xn≥0,�n≥0

{
p′

nxn − c′
nxn + r′�n

}

subject to
Anxn + �n = bn[yn]

xjn ≤ xjRn(1 + ε)[�jRn] ∀ xjRn > 0

xjn ≤ 0[�jNRn] ∀ xjRn = 0.

(1)

Apart from being defined for several lim-
iting inputs, this formulation reveals another
difference in assumption between Paris’ equi-
librium problem (36)–(45) and the first model
described by (1)–(4). The shadow values of
resources yn are now lower bounded by the ex-
ogenous leasing rates r. Keeping �n nonnega-
tive implies that farmers have the opportunity
to rent out resources if their marginal profit lies
below r, but cannot lease resources for own use
if their marginal profit is above r.4

Paris does not give an economic or empiri-
cal motivation for this rather unusual specifica-
tion but instead argues for a modification of the
standard PMP procedure, because “the spec-
ification given in (1)–(4) with multiple con-
straints on resources produces a vector of dual
variables yn that contains some zero elements”
(p. 1054). That is not true in general since all el-
ements of yn can still be positive. In fact, they
will be positive if the data imply binding re-
source quantities, i.e., if the sum of observed
resource allocations over all crops is equal to
bn, and if all observed gross margins are pos-
itive. Failure of either one of these two con-
ditions, however, would also yield a zero dual
value in the single resource case.5 We do not

3 For a comparison between the shadow values generated by
linear and quadratic programming models, see Heckelei and Wolff.

4 This behavioral restriction of Phase 1 is inconsistent with the
simulation model in Phase 3 where farmers can augment their re-
sources bn.

5 Using yearly observations on yields, inputs, and prices im-
plies that observed gross margins might significantly deviate from
expected values. If the gross margins of activities with nonzero
levels are negative in case of model (1)–(4) or imply marginal re-
source profitability below r in case of models (36)–(45), the cal-
ibration constraints (3) and (37) must also enter as “greater or
equal” constraints with negative perturbations. Otherwise the opti-
mal solutions of these activities are zero and violate the calibration
property.

see any principle difference with respect to the
two specifications that is related to the number
of limiting resources. Note that both suggested
specifications for the first phase of SPEP imply
profit-maximizing behavior—in contrast to the
simulation model in Phase 3.

The last issue regarding Phase 1 we would
like to address concerns the treatment of miss-
ing data on prices and costs for crops not pro-
duced by a farm. The author claims that using
average sample information from farms pro-
ducing these crops “relaxes the distributional
assumptions traditionally required for imple-
menting a self-selection framework” (p. 1060).
Paris’ approach implies a distribution of costs
and prices across the sample with a spike at
the average value. We consider this a much
stronger assumption than the normality as-
sumption implied by Heckman’s procedure. A
consequence for the later application to Italian
farm data is that about 50% additional “ob-
servations” are introduced into the sample, in-
cluding some extreme cases such as potatoes
where only three out of thirty-seven farms ac-
tually produce the crop.

Phase 2: Parameterization and Estimation

For the case of the aggregate “sample”
model, Paris parameterizes marginal cost
equations (13) and the “implicit supply of the
single limiting input” (p.1052), (15), in such a
way that the integration to a cost function re-
sults in (17), C(x, y) = x′Qx/2 + ysy/2 + x′Hy.6
The nature of this “total variable cost func-
tion” (p. 1050) is not clear to us. Apparently,
its derivative with respect to the input price y
will result in a “derived demand of limiting in-
puts” (p. 1052). This seems analogous to a dual
cost function derived from a cost minimization
problem with given output quantities and input
prices. However, C(x, y) is not homogeneous
of degree one in input prices, which contradicts
this interpretation. Furthermore, the Cholesky
factorization in (18) forces C(x, y) to become
convex in y7 instead of concave as required for
a regular cost function. Since C(x, y) violates
regularity conditions for a standard dual cost
function (see Chambers: 52ff) it must have a
different underlying rationale, which we can-
not infer from the text.

Our confusion is furthered by the fact that
the left-hand sides of equations (13) and (14)
do not include the opportunity cost of limiting

6 The specification for the single farm is equivalent.
7 Since s lies on the diagonal of a positive semi-definite matrix.



1080 November 2003 Amer. J. Agr. Econ.

resources from Phase 1, A′y or A′
nyn. Since

the derivative of C(xn, yn) with respect to y
results in “derived demand of limiting inputs,”
we assumed that those resources are to be
considered variable inputs and consequently
contribute to marginal costs. In fact, the
appearance of the input price y in the func-
tional representation of marginal cost on the

right hand side of the equation requires this
interpretation.8

In order to estimate the system of marginal
cost and input demand equations, Paris sug-
gests the use of the generalized maximum
entropy (GME) estimator. In case of pos-
itive degrees of freedom—as in the later
application—other estimation criteria could
have been employed as well. A motivation
for applying GME nevertheless could be the
possibility of including prior information by
defining support points for both the parame-
ters and the error terms. Since the GME ap-
proach implies that parameter estimates are
(a) restricted to convex combinations of a pri-
ori specified finite supports and (b) drawn to-
ward the simple average of the support as
closely as the data constraints allow, the def-
inition of support points should be motivated
carefully.9

Paris motivates the support points for the
parameters Q, H, and s by, in his view, plau-
sible ranges and centers for the elements
of Q (p. 1053). However, they are defined
only indirectly in terms of supports for el-
ements of a partitioned Cholesky factoriza-
tion (p. 1052ff). Unfortunately, the specific and

8 Apart from these theoretical issues, there is also an empirical
concern related to the cost function and how it is used by Paris.
The parameter matrix Q implies “scale-variant” point elasticities
of supply. As a consequence, for example, twenty identical farms
would not have the same aggregate supply response as an aggregate
model with the same parameters. Although many empirical models
show this characteristic, the simultaneous use of farm models and
aggregate model renders it a problematic choice. The error terms
at farm level are biased by this specification. Some scaling of Q
(see, e.g., Heckelei and Britz) or other functional forms would be
appropriate in this case.

9 This is especially true for positive degrees of freedom where
supports on parameters would not even be required for consistent
parameter estimation of the linear model (the proof in Mittelham-
mer and Cardell can be changed to accommodate infinite param-
eter supports, which was verified by personal communication with
the authors).

nonlinear structure of this decomposition im-
plies support points for the elements of Q, H
and s that depend on the order of the crops. For
illustration consider a simple 3 × 3 example for
a part of Paris’ Cholesky decomposition, Q =
LDL, where we suppress the subscripts used in
the text. Denoting the j, j’th element of L and
D as Ljj′ and Djj′ , respectively, we have

(2) Q =




L2
11 D11 L11 D11L21 L11 D11L31

L11 D11L21 L2
21 D11 + L2

22 D22 L21 D11L31 + L22 D22L32

L11 D11L31 L21 D11L31 + L22 D22L32 L2
31 D11 + L2

32 D22 + L2
33 D33


.

Suppose we had observations on three crops
for a farm such that (�LPj + cj)/xRj = 4 ∀ j.
Based on the description on page 1053 we
would then obtain the lower and upper sup-
port points for L and D as

ZL =



1 0 0
(−4; 4) 1 0
(−4; 4) (−4; 4) 1


 and

ZD =



(0; 8) 0 0
0 (0; 8) 0
0 0 (0; 8)




(3)

which in turn imply the following lower and
upper support points for the matrix Q:10

ZQ =



(0; 8) (−32; 32) (−32; 32)
(−32; 32) (0; 136) (−160; 160)
(−32; 32) (−160; 160) (0; 264)


.

(4)

The characteristics of the Cholesky factor-
ization leads to different, order dependent,
ranges for the elements of Q, despite the ob-
viously identical characteristics of the three
crops in this case—a logical contradiction. Just
changing the order of the crops would impact
the value of the parameter estimates.11 It can
further be noticed that the units appropriate
for Q and implied by the choice of support for

10 The support points for Q in (4) represent the minimum and
maximum possible value for each element depending on the range
of the elements in L and D. The Cholesky factorization certainly
puts restrictions on the admissible combination. For example, not
all elements of Q could be at their lowest possible value at the same
time.

11 The comparatively small support ranges in the first row/column
might explain the small absolute estimates for the first crop “sugar
beet” in table 3.
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elements of L and D, [$/weight2], are not pre-
served in the transformation.

The support point problem of this approach
is easily overcome: support points and associ-
ated probabilities can be defined for the ele-
ments of Q directly. The GME program would
just require the classic Cholesky factorization
of the form Q = LL′—or to return to the arti-
cle’s formulation—of the form

[
Q H
H′ s

]= LL′ as
a constraint to ensure proper curvature.12

Phase 3 and a Look across the Approach

The equilibrium problem (46)–(49) represents
the final model to be used for simulation pur-
poses. We agree with Paris insofar as we cannot
find any underlying optimization model that
would imply this system of equations for its
optimal solutions. But how then is this model
to be interpreted? Why should the conditions
(47) and (48) hold in reality? Since � is re-
quired to be nonnegative, equation (47) en-
sures that the ‘derived factor demand’ (right
hand side) is not smaller than the factor use
Anxn indicating that the average base year use
per unit of output still applies. Equation (48)
resembles a traditional marginal cost condi-
tion, but adds the cost of limiting resources un-
der Leontief technology, A′

nyn, to the deriva-
tive of the cost function. What rationale could
possibly lead to such a combination of Leontief
technology and a general cost function?

Apart from these additional questions re-
lated to the interpretation of the cost func-
tion, there is clearly an inconsistency between
Phase 1 and Phases 2, 3. Whereas Phase 1
assumes profit maximization to estimate
marginal cost and prices of limiting resources,
Phases 2 and 3 employ some other (unknown)
behavioral assumption.13

Application

Our final remarks concern the empirical appli-
cation of SPEP to a cross-sectional sample of
thirty-seven farms from the Italian Farm Ac-
counting Data Network (p. 1055ff): (1) The
sample includes just one year, 1995, so that the
random components of observed prices and
yields strongly influence the estimation results.
(2) Prices for outputs differ considerably be-

12 For examples of this approach see Heckelei and Britz or
Heckelei and Wolff.

13 We cannot ourselves offer a satisfactory solution for the SPEP
model, but Heckelei and Wolff demonstrate how explicit optimiza-
tion models can be estimated without any employment of a Phase 1.

tween the farms—the range for tomatoes is,
for example, close to a factor of three. This
casts additional doubt on the approach of using
average sample values for missing data. (3) It
is unclear if the sample was restricted a pri-
ori to farms producing the eight included field
crops, or if information for all other production
activities was simply eliminated. (4) The rep-
resentation of the common agricultural policy
(CAP) ignores important provisions: (a) The
production of sugar beets is subject to a farm-
specific sales quota, which is missing in the
model; (b) whereas premiums for set-aside are
introduced, the additional land requirement
to fulfil set-aside obligation is not accounted
for, which overestimates the profitability of ce-
reals and oilseeds; (c) further complications
arise from the fact that small producers (less
then 80 tons of cereal equivalents produced)
are exempt from obligatory set-aside, but re-
ceive lower premiums. Table 1 suggests that
such farms are included in the data but only
an (apparently) average set-aside rate of 5%
is used. The inaccurate representation of the
CAP alone casts doubt on the usefulness of
the model for policy analysis—even setting
aside the other considerable conceptual and
methodological problems mentioned above.
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