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Abstract: We present a hedonic framework to estimate US households’ prefer-
ences over local climates, using detailed weather and 2000 Census data. We find that
Americans favor a daily average temperature of 65 degrees Fahrenheit, that they will
pay more on the margin to avoid excess heat than cold, and that damages increase
less than linearly over extreme cold. These preferences vary by location due to sort-
ing or adaptation. Changes in climate amenities under business-as-usual predictions
imply annual welfare losses of 1%–4% of income by 2100, holding technology and
preferences constant.
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THE CHEMISTRY OF THE HUMAN BODY makes our health and comfort sensitive
to climate. Every day, climate influences human activity, including diet, chores, recre-
ation, and conversation. Households spend considerable amounts on housing, energy,
clothing, and travel to protect themselves from extreme climates and to enjoy com-
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fortable moderation. Geographically, climate affects the desirability of different loca-
tions and the quality of life they offer; few seek to live in the freezing tundra or op-
pressively hot deserts. Given the undeniable influence climate has on economic de-
cisions and welfare, we seek to estimate the dollar value American households place
on climate amenities, with a focus on temperature.

Valuing climate amenities not only helps us to understand how climate affects wel-
fare and where people live but also helps to inform policy responses to climate change.
Global climate change threatens to alter local climates, most obviously by raising tem-
peratures. A priori, the welfare impacts of higher temperatures are ambiguous: house-
holds may suffer from hotter summers but benefit from milder winters. Ultimately,
these impacts depend on where households are located, the changes in climate ameni-
ties they experience, and how much they value these changes.

In this paper, we estimate the value of climate amenities in the United States by
examining how households’ willingness to pay (WTP) to live in different areas varies
with climate in the cross-section. Following the intuition laid out by Rosen (1974,
1979) and Roback (1982), and later refined by Albouy (2012), we measure WTP by
developing a local quality-of-life (QOL) index based on how much households pay in
costs of living relative to the incomes they receive. The United States is a particularly
appropriate setting in which to use this method as it has a large population that is
mobile over areas with diverse climates. Globally, the United States lies in a temper-
ate zone, with some areas that are quite hot (Arizona) while others are quite cold
(Minnesota), and some with extreme seasonality (Missouri) while others are mild
year round (coastal California). This variation allows us to identify preferences over a
broad range of habitable climates.

We adopt this hedonic approach as there are no explicit markets for climate ame-
nities, only an implicit market based on household location choices. Our estimates of
amenity values primarily reflect impacts of exposure to climate on comfort, activity,
and health, including time use (Graff Zivin and Neidell 2012) and mortality risk
(Deschênes and Greenstone 2011; Barreca et al. 2015). They exclude costs from res-
idential heating, cooling, and insulation. As such, the value of the climate amenities
we estimate does not appear in national income accounts and so neither would the
impact of climate change on these amenities. Our study therefore complements work
that assesses how climate directly affects national income through agricultural and
urban productivity (for a survey of the climate and productivity literature, see Tol
2002, 2009).

We adopt a cross-sectional estimation strategy in the tradition of Mendelsohn,
Nordhaus, and Shaw (1994) rather than a time-series panel approach for several

North American summer meeting of the Econometric Society, North American Regional Sci-
ence Council, National Bureau of Economic Research, Environmental and Energy Economics,
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source Economists.
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reasons. First, yearly changes in weather are unlikely to affect households’ WTP to
live in an area: WTP should depend on long-run climate rather than the outcome of
the weather in the most recent year. Second, low frequency changes are not very in-
formative as long-run secular climate changes so far have been slight, particularly
relative to changes in technology—especially air conditioning (Barreca et al. 2015)—
and local economic conditions. Third, Kuminoff and Pope (2014) have shown that
temporal changes in the capitalization of amenities do not typically translate to mea-
sures of WTP. Finally, households can mitigate potential damages from climate
through adaptation—say, by insulating homes, changing wardrobes, or adopting new
activities—which cross-sectional methods account for, thereby making our estimates
more relevant for assessing the impact of climate change.

An unavoidable drawback of our estimation strategy is that it requires climate
amenities to be uncorrelated with the influence unobserved local amenities have on
QOL. This untestable assumption is hard to circumvent, as there do not appear to
be any viable instrumental variables for climate. Instead, we examine the potential
for omitted variable bias by testing the robustness of our estimates to an array of spec-
ifications and powerful controls, following the intuition laid out by Altonji, Elder, and
Taber (2005) and the literature on agricultural yields and farmland values (Schlen-
ker, Hanemann, and Fisher 2006; Deschênes and Greenstone 2007; Schlenker and
Roberts 2009; Deschênes and Greenstone 2012; Fisher et al. 2012). While the stabil-
ity of our estimates across these specifications is reassuring, we nonetheless acknowl-
edge that our research design cannot conclusively rule out the possibility that unob-
served factors are influencing our estimates.

Prior hedonic studies investigating US climate preferences have been few and con-
flicting. Estimates of WTP for incremental warming range from positive (Hoch and
Drake 1974; Moore 1998), to approximately zero (Nordhaus 1996), to negative (Cragg
and Kahn 1997, 1999; Kahn 2009; Sinha and Cropper 2013).1 Our paper makes
three contributions to the literature on climate amenities by drawing from recent in-
novations in the literatures on climate damages to agriculture and health, quality of
life measurement, and hedonic estimation under preference heterogeneity. First, we
characterize climates using the full distribution of realized daily temperatures rather
than seasonal or monthly averages, allowing us to explore how households value pro-
gressively extreme temperatures. Prior research into climate amenities has ignored the
importance of flexibly modeling temperature profiles, even though other research has

1. Hedonic studies focusing on countries other than the United States include Maddison
and Bigano (2003) in Italy, Rehdanz (2006) in Great Britain, Rehdanz and Maddison (2009)
in Germany, and Timmins (2007) in Brazil. In addition, alternative nonhedonic approaches
have been used to estimate the impact of climate change on amenities. Shapiro and Smith
(1981) and Maddison (2003) use a household production function approach, Fritjers and
Van Praag (1998) use hypothetical equivalence scales, and Rehdanz and Maddison (2005)
link a panel of self-reported happiness across 67 countries to temperature and precipitation.
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shown that extreme temperatures, not averages, are especially harmful to crop yields
(Schlenker et al. 2006; Schlenker and Roberts 2009) and health (Deschênes and
Greenstone 2011; Barreca 2012). Second, following Albouy and Lue (2015), our
QOL estimates account for commuting costs, local expenditures beyond housing, and
federal taxes on wages. We show that previous work, by ignoring these factors, pro-
duced noisy and misleading estimates of climate valuations, while our results are ro-
bust to many alternative specifications, such as including controls for every state. Third,
we apply methods by Bajari and Benkard (2005) to model unobserved heterogeneity in
households’ preferences, thereby allowing for sorting based on differences in (dis)taste
for cold or heat and for adaptation to local climates.

Our estimates of climate preferences yield four main results. First, we find that
Americans most prefer daily average temperatures—the average of the daily high and
daily low—near 65 degrees Fahrenheit (°F), agreeing with standard degree-day mod-
els that predict little need for heating or cooling at this temperature. Second, on the
margin, households pay more to avoid a degree of excess heat than a degree of excess
cold. Third, we find that the marginal WTP (MWTP) to avoid extreme cold is not
substantially greater than the MWTP to avoid moderate cold. Put another way,
households will pay more to a turn a moderately cold day into a perfect day than to
turn a bitterly cold day into a moderately cold day. This finding is consistent with
evidence that households reduce their time outdoors as temperatures become uncom-
fortable, reducing their sensitivity to further temperature changes (Graff Zivin and
Neidell 2012). Fourth, we find that households in the South are particularly averse to
cold. This result is consistent with models of both residential sorting and adaptation.
Conversely, we do not find evidence that southern households are less heat averse
than northern households.

We apply our estimated climate preferences by simulating how climate change may
affect welfare by improving or reducing the value of climate amenities. For our cli-
mate change predictions, we rely primarily on the business-as-usual A2 scenario used
in the Intergovernmental Panel on Climate Change fourth assessment report (IPCC
2007), which predicts a 7.3 °F increase in US temperatures by 2100. Our simulated
welfare effects are predicated on technology and preferences remaining constant and
are therefore best interpreted as a benchmark case. This assumption is common to
most estimates of climate change damages, including the agricultural and health lit-
eratures referenced above. We view endogenizing technology and preferences as be-
yond the scope of this paper’s climate change application, and we leave this issue for
future work.

We project that on average, Americans would pay 1%–4% of their annual income
to avoid predicted climate change. While damages are rather severe in the South, we
find that most areas in the North also suffer because (1) they lose many pleasant sum-
mer days in exchange for only moderately warmer winter days and (2) northerners are
willing to pay less to reduce cold than are southerners. Welfare impacts are reduced
slightly when we model migration responses.
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1. HEDONIC ESTIMATES OF QUALITY OF LIFE

The intuition underlying our approach is that households pay higher prices and ac-
cept lower wages to live in areas with desirable climate amenities. Below we discuss
the hedonic framework underlying this intuition, how we calculate wage and cost of
living differences across areas, and how we combine these to create a single-index
QOL measure for each location. Our approach is rooted in the conceptual frame-
work of Rosen (1974, 1979) and Roback (1982) and adopts important recent con-
tributions to this framework from the hedonic literature. In particular, we follow
Albouy (2012) and Albouy and Lue (2015) to properly weight wages and housing
prices when creating the QOL measure, and we adopt Bajari and Benkard (2005) to
allow for preference heterogeneity. These innovations ultimately prove to be conse-
quential in obtaining preferences for climate, as we discuss further below.

1.1. A Model of QOL Using Local Cost of Living and Wage Differentials

The US economy consists of locations, indexed by j, which trade with each other
and share a population of perfectly mobile, price-taking households, indexed by i (we
discuss estimates that relax the perfect mobility assumption in sec. 6). These house-
holds have preferences over two consumption goods: a traded numeraire good x and
a nontraded “home” good y, with local price pj that determines local cost of living.
Households earn wage income wi

j that is location-dependent and own portfolios of
land and capital that pay a combined income of Ri. Gross household income is
mi

j = Ri þ wi
j, out of which households pay federal taxes of τðmi

jÞ. Federal revenues
are rebated lump sum.2

Each location is characterized by a K-dimensional vector of observable amenities
Zj, including climate, and a scalar characteristic ξj that is observable to households
but not econometricians.3 We assume a continuum of locations so that the set of
available characteristics (Z, ξ ) is a complete, compact subset of ℝKþ1. Each household
i seeks out the location j that maximizes its utility, given by uij =Viðpj;wi

j;Zj; ξ jÞ.
This indirect utility function is assumed to be continuous and differentiable in all its
arguments, strictly increasing in wi and ξj, and strictly decreasing in pj. Households
are permitted to have heterogeneous preferences over (Z, ξ).

2. We also apply adjustments for state taxes and tax benefits to owner occupied housing,
discussed in Albouy (2012), which prove to be minor in practice.

3. This set up omits an idiosyncratic unobserved preference shock εij from households’
utility function. Relaxing this assumption implies that the QOL measure may depend not just
on prices and wages but also on population levels or changes. We allow for such dependence
in some of our specifications as discussed below (for example, by adjusting our wage estimates
for migration per Dahl [2002]), none of which substantially alters our conclusions. See Albouy
(2012) for a more general discussion of addressing idiosyncratic preferences in QOL estimates.
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On the supply side, we assume that firms face perfectly competitive input and out-
put prices and earn zero profits, offering higher wage levels in more productive loca-
tions. We model each household i’s wage in location j as ϕiwj, where ϕ

i is household-
specific skill and wj is the local wage level.

4

Let pðZj; ξ jÞ and wðZj; ξ jÞ denote the functions relating wages and prices to
local characteristics. These functions are determined in equilibrium by households’
demands for local amenities, firms’ location decisions, and the availability of land. On
the demand side, household utility maximization implies the following first-order
condition for each characteristic k:

1

mi
jλ

�i

∂Viðpj; wj; Zj; ξ jÞ
∂Zk

=
pjyij
mi

j

∂lnpðZj; ξ jÞ
∂Zk

–
wi

jð1 – τ0Þ
mi

j

∂lnwðZj; ξ jÞ
∂Zk

; ð1Þ

where λi is the marginal utility of income and τ0 is the average marginal tax rate on
labor income. This equation relates household i’s marginal valuation of characteristic
k, as a fraction of income, to differential changes in the logarithms of the cost of liv-
ing and wage differentials at j.

Operationally, we develop a QOL index to indicate the willingness to pay of house-
holds, averaged by income, from the right-hand side of (1). This measure at j, denoted
Q̂ j, is a weighted combination of p̂j and ŵj, the differentials in log housing costs and
wages relative to the US income-weighted average, according to the formula

Q̂ j = syp̂j – ð1 – τ 0Þswŵj = 0:33p̂j – 0:50ŵj; ð2Þ
where sy denotes the average share of income spent on local goods and sw the average
share of income from wages. The second equality substitutes in values for these pa-
rameters of sy = 0:33, sw = 0:75, and τ 0 = 0:33. For additional details, including the
incorporation of local nonhousing expenditures into sy, see Albouy (2012). Section 6
considers estimates allowing for heterogeneity in sy and sw.

Let Q̂ðZj; ξ jÞ denote QOL as a function of local characteristics, per (2) and the
functions pðZj; ξ jÞ and wðZj; ξ jÞ. Then, by condition (1), for any household i in j, the
marginal willingness to pay (MWTP) for characteristic k is equal to the derivative of
Q̂ðZj; ξ jÞ with respect to k:

1
mi

jλ
i

∂Viðpj; wj; Zj; ξ jÞ
∂Zk

=
∂Q̂ðZj; ξ jÞ

∂Zk

: ð3Þ

Condition (3) is illustrated in figure 1 in the case of a single characteristic, aver-
age summer temperature Ts. The bold line denotes a hypothetical function Q̂ðTsÞ

4. By using a single index of skill, we abstract away from the possibility that some house-
holds have a comparative advantage in certain locations. Relaxing this assumption has implica-
tions similar to those for allowing an idiosyncratic unobserved preference shock.
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that is decreasing in Ts, indicating that milder weather is “paid for” through either
higher housing prices or lower wages. The slope of Q̂ðTsÞ at any given location is the
hedonic price for a marginal increase in temperature at that location. This hedonic
price is equal to households’MWTP for Ts at that location, as shown for locations A
and B on the figure. As shown, households at A have a higher MWTP to avoid heat
than do households at B, consistent with sorting or adaptation.

1.2. Estimates of Wage and Housing Cost Differentials, and QOL

We follow Albouy (2012) to estimate wage and housing-cost differentials using the
5% sample of Census data from the 2000 Integrated Public Use Microdata Series
(IPUMS). Geographically, these data are available by Public Use Microdata Areas
(PUMAs), which contain populations of 100,000–300,000 and form the main unit
of our analysis. We summarize this procedure below; for more details, see Albouy
(2012).

Figure 1. Illustrative hedonic price function with demand-side equilibrium first-order con-
ditions satisfied. “MWTP” denotes marginal willingness to pay.
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We calculate wage differentials by PUMA, ŵj, using the logarithm of hourly wages
for full-time workers aged 25–55 and controlling for observable skill and occupation
differences across workers. Specifically, we regress the log wage of worker i on PUMA
indicators μw

j and extensive controls Xw
i (each interacted with gender) for education,

experience, race, occupation, and industry, as well as veteran, marital, and immigrant
status, in an equation of the form lnwij =Xw

i β
w þ μw

j þ εwij . The estimates of the μ
w
j are

used as the PUMA wage differentials ŵj following a refinement, per Albouy and Lue
(2015), so that they reflect wages by place of work rather than place of residence,
netting out differences in commuting costs.

Our model interprets the ŵj as the causal effect of a PUMA’s characteristics on a
worker’s wage, while the observable and unobservable skill differences across work-
ers, the Xw

i and εwij , are an analogue to the ϕi factors in the model. This interpreta-
tion requires that any sorting of workers across locations based on unobserved skills
or a spatial match component of wages does not substantially affect observed wage
premia. This assumption receives mixed support in the literature. Glaeser and Maré
(2001) and Baum-Snow and Pavan (2012) find that unobserved skill and match-
based sorting contribute little to city-size wage premia; however, Gyourko, Mayer,
and Sinai (2013) find that a select group of “superstar cities” may disproportionately
attract high-skilled workers. Dahl (2002) finds that selective migration biases esti-
mates of the returns to education (though not the range of returns across states), and
Kennan and Walker (2011) finds a role for location-specific job matches in migration
decisions.

In light of the uncertainty in the literature, we address the potential for skill and
match-based sorting in a series of alternative specifications. First, we adopt the method
used in Dahl (2002) to adjust our wage estimates ŵj for selective migration by includ-
ing a flexible control function of migration probabilities in our wage equation. Second,
in a closely related specification, we directly adjust our QOL estimates for each PUMA
using the PUMA’s rate of net in-migration between 1990 and 2000 (in percent) and
a mobility cost estimate from Notowidigdo (2013). Finally, we guard against effects
from “superstar cities” by estimating a specification in which superstar metropolitan
areas (as defined in Gyourko et al. [2013]) are dropped from the sample. These spec-
ifications are described in more detail in section 6 and ultimately yield estimates of
climate preferences and welfare effects that are not qualitatively different from our
baseline estimates.

To calculate housing cost differentials, we use housing values and gross rents, in-
cluding utilities. Following previous studies, we convert housing values to imputed
rents at a discount rate of 7.85% (Peiser and Smith 1985) and add in utility costs to
make them comparable to gross rents. This approach follows the standard practice
in the QOL literature from Blomquist, Berger, and Hoehn (1988) to Chen and Ro-
senthal (2008) and is required by the data because utility costs are included in gross
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rents. We then calculate housing-cost differentials with a regression of rents on flex-
ible controls Yij (each interacted with renter status) for size, rooms, acreage, commer-
cial use, kitchen and plumbing facilities, type and age of building, and the number of
residents per room. This regression takes the form lnpij =Yijβ

p þ μp
j þ ε pij . The esti-

mates of the μp
j are then used as PUMA-level housing cost differentials p̂j. Proper

identification of housing-cost differences requires that they not vary systematically
with unobserved housing quality across locations.

We incorporate energy and insulation costs in our housing-cost measure because
doing so allows us to interpret our QOL differentials as solely reflecting the value of
nonmarket climate amenities rather than the effect of climate on utility costs. Hence,
our QOL differentials will reflect the disamenity of outdoor exposure to climate and
the disamenity of adverse indoor temperatures to the extent that they are not com-
pletely mitigated by insulation and energy use. In addition, the QOL estimates will
incorporate any disamenity from spending more time indoors to avoid uncomfort-
able outdoor temperatures.

Descriptive statistics for QOL are given at the bottom of table 1,5 and QOL
differentials across PUMAs for the year 2000 are mapped in figure 2. These esti-
mates show that households find the amenities in urban areas, coastal locations, and
certain mountain areas to be quite desirable. Areas in the middle of the country, where
seasons are more extreme, tend to be less desirable, although the variation is consider-
able. As discussed in Albouy (2012), our QOL estimates correlate well with noneco-
nomic measures of QOL, such as the “livability” rankings in the Places Rated Almanac
(Savageau 1999). Moreover, the QOL model correctly predicts the relationship be-
tween housing costs and wages, controlling for observable amenities.

2. DATA

We estimate our main specifications at the PUMA level using 2,057 PUMAs cov-
ering the contiguous 48 states as of the 2000 census.6 In this section, we summarize
our data set, covering recent historical climate, climate-change projections, and other
variables. Additional details are provided in appendix 2 (available online).

5. The mean QOL differential is not exactly zero in table 1 because the table shows un-
weighted data, while QOL differentials are defined so that the income-weighted mean is zero.

6. We have also aggregated our data to the MSA-level and run some of our empirical
specifications at an MSA-level resolution. The point estimates for preferences and climate
change welfare impacts are similar to those discussed below, with modestly larger standard errors
(see appendix table A1.1, col. R13). We believe that the MSA-level results are less precise
because MSAs are frequently too large to capture important micro-climates, particularly in
densely populated coastal areas such as San Francisco.
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Table 1. Descriptive Statistics for Primary Data Set

Mean SD
10th

Percentile
90th

Percentile

Temperature data, 1970–99 average:
Average annual heating degree days
(1000s) 4.384 2.204 1.326 7.009

Average annual cooling degree days
(1000s) 1.290 .929 .374 2.762

Temperature data, 2070–99 projected
(CCSM A2):

Projected average annual heating
degree days (1000s) 2.974 1.729 .527 5.024

Projected average annual cooling
degree days (1000s) 2.547 1.190 1.304 4.413

Other climate data, 1970–99 average:
Average annual precipitation
(inches) 39.26 14.09 16.25 53.85

Average annual relative humidity (%) 63.58 8.10 53.31 70.52
Average annual sunshine (% of
available daylight) 60.18 8.64 49.74 73.08

Other climate data, 2070–99
projected (CCSM A2):

Projected average annual
precipitation (inches) 41.54 15.23 15.28 56.40

Projected average annual relative
humidity (%) 62.66 8.74 51.18 69.63

Projected average annual sunshine
(% of available daylight) 61.37 8.56 51.31 72.85

Geographic data:
Area in square miles 1,436 4,255 17 3,355
Distance from centroid of PUMA
to ocean (miles) 250.1 272.3 4.3 729.2

Distance from centroid of PUMA
to Great Lake (miles) 763.2 715.4 54.0 2,128.4

Average land slope (degrees) 1.677 2.131 .191 4.270
Demographic data (2000 census):

Weighted population density
(people per square mile) 5,466 11,997 360 9,981

Percent high school graduates 83.9 8.8 72.1 93.3
Percent of population with
bachelor’s degree 24.1 12.4 11.3 41.0

Percent of population with
graduate degree 8.7 5.6 3.7 20.3
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2.1. Recent Historical Climate Data

Our daily average temperature data over 1970–99 originate from Schlenker and Rob-
erts (2009), which provides historic daily temperatures at a 4-kilometer-square reso-
lution. From these data, we create temperature bins with a width of 0.9 °F (0.5 °C)
and calculate the average number of days at each 4-kilometer grid point, over 1970–
99, in which the daily average temperature—calculated as the mean of the daily high

Mean SD
10th

Percentile
90th

Percentile

Average age 35.8 3.1 32.0 39.3
Percent Hispanic 8.9 13.5 .6 25.8
Percent black 12.5 17.5 .7 36.5
Population (1000s) 135.9 32.9 103.8 182.2
Quality of life differential (in logs) –.001 .784 –.089 .101

Note.—Sample consists of 2,057 Public Use Microdata Areas (PUMAs).

Table 1 (Continued)

Figure 2. Quality of life differentials by public-use microdata area in 2000. A color version
of this figure is available online.
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and low—fell within each bin.7 Within each PUMA, we average the bin distribution
at each grid point to yield a PUMA-level data set.

We obtain monthly precipitation and humidity data from the Parameter elevation
Regressions on Independent Slopes Model (PRISM) at the same grid points for 1970–
99, averaging them by month of year at the PUMA level. We obtain sunshine data,
measured as the percentage of daylight hours for which the sun is not obscured by
clouds, by month of year from 156 weather stations from the National Climactic Data
Center. We interpolate PUMA-level data on sunshine from the four closest weather
stations.8

2.2. Projected Climate Data

Predicted climate change data (temperatures, precipitation, humidity, and sunshine)
are from the third release of the Community Climate System Model. These data
were also used in the Intergovernmental Panel on Climate Change Assessment
Report 4 (IPCC AR4) released in 2007. We use two business-as-usual scenarios in
which no actions to reduce greenhouse gas emissions are taken: the A2 scenario and
the A1FI scenario. In both models, data are provided at a resolution of 1.4 degrees
longitude (120 km) by 1.4 degrees latitude (155 km), so we interpolate these data to
the PUMA level.9 The A2 scenario predicts average (population-weighted) US warm-

7. As an alternative specification, we fit a sinusoidal curve to each day’s high and low
temperature and then find the fraction of each day that falls within each temperature bin,
following Schlenker and Roberts (2009). The resulting US population-weighted average tem-
perature distribution is plotted in appendix figure A1.3 and is necessarily broader than that
obtained from daily means. Figure A1.3 also presents estimated WTPs for temperature that
use the procedure discussed in section 3 and are analogous to figure 4 (7th degree spline) and
figure 5 (panel B) in the main text. The estimated WTPs using intraday temperature varia-
tion are similar to those in the main text: WTP to avoid heat is greater than WTP to avoid
cold, and the WTP curves flatten at extreme temperatures. This flattening occurs at farther
extremes than in the main specification, since extreme low and high temperatures are neces-
sarily lower and higher, respectively, than extreme daily mean temperatures. Figure A1.3 does
not present an analogous distribution of future climate because our climate model data source
does not provide high and low temperature information.

8. Our sunshine data are therefore not as fine scaled as the other variables in our re-
gressions and may incorporate prediction error. This concern is at least partially mitigated by
the fact that variation in sunshine is smooth relative to the density of sunshine-measuring
weather stations, as shown in appendix figures A2.1 and A2.2, although microclimates may
nonetheless not be captured. Fine-scale variation in precipitation and humidity may help to
proxy for finer changes in local sunshine, as they are strongly correlated at coarser levels of
geography.

9. This interpolation may fail to capture localized changes, particularly in coastal areas.
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ing of 7.3 °F from the baseline (1970–99) to the end of the century (2070–99), while
the A1FI scenario predicts warming of 8.6 °F. We focus on the A2 scenario but also
provide results for A1FI.

Data for present and projected (A2 model) climate variables are given in the top
half of table 1, which summarizes temperature distributions using annual heating
degree days (HDD) and cooling degree days (CDD) statistics. HDD is a measure of
how cold a location is: it equals the sum, over all days of the year in which it is colder
than 65 °F, of the difference between 65 °F and each day’s mean temperature. CDD,
a measure of heat, is defined similarly for temperatures greater than 65 °F. HDD and
CDD are often used by engineers as predictors of heating and cooling loads, and
since Graves (1979) they have often been used as measures of climate amenities.

According to the CCSM model predictions, climate change will be manifest pri-
marily through changes in temperature, as seen in table 1. The average US PUMA
will see its number of HDDs fall by 32% and its number of CDDs rise by 97% un-
der the A2 scenario. In contrast, changes to precipitation, relative humidity, and sun-
shine are predicted to be minor on average.10 The predicted temperature changes vary
considerably by geography, as shown in figure 3. While substantial increases in both
January and July temperatures are predicted nationwide, the interior South is pre-
dicted to experience a particularly large increase in days for which the average tempera-
ture exceeds 90 °F.

2.3. Other Variables

Table 1 also presents data on the control variables in our econometric specifications.
The geographic controls, used in all estimates, include the minimum distances from
each PUMA’s centroid to an ocean and Great Lakes coastline, as well as the average
slope of the land, to measure hilliness. Demographic data include measures of popula-
tion density,11 educational attainment, age, and racial-ethnic composition. Table A1.2
in the appendix provides evidence on correlations of these geographic and demographic

10. Some areas are predicted to have appreciable changes, though these average out to be
small. Also note that our study is meant to capture the impact of precipitation on QOL, not
water supply.

11. We use population density rather than population because PUMAs are drawn to have
similar populations. Our population density measure is “weighted” in the sense that, within
each PUMA, we calculate the population density of each of its census tracts and then take a
population-weighted average of these densities. This weighted density gives a better sense
of the population density immediately around individuals than a conventional unweighted
measure.
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control variables with HDD and CDD. Table 1 also provides statistics on the distri-
bution of population across PUMAs and on the QOL measure.

3. ESTIMATION OF WTP FOR CLIMATE UNDER

HOMOGENEOUS PREFERENCES

3.1. Specification

We begin by estimating a simple hedonic model in which we assume that climate
preferences are homogeneous across the US population and that factors (including
climate) affecting QOL enter linearly. While this model is highly restrictive, it pro-
vides an intuitive introduction to our approach that resembles the previous literature,
and it provides a benchmark against which we can later compare a model that allows
for preference heterogeneity.

We estimate the impact of marginal changes to climate on QOL using an OLS
regression of each PUMA j’s QOL differential Q̂ j on vectors of climate variables Xj

and other local characteristics Dj:

Q̂ j = βXj þ γDj þ ξ j: ð4Þ

The parameters β and γ represent the WTP of households for an additional unit
of each element of Xj and Dj, respectively, measured as a fraction of income. The
disturbance term ξj is a vertical location characteristic that is observed by households
but not by the econometrician. We face two substantial challenges in estimating (4).
First, we must select a functional form for how the climate variables—and in partic-
ular the temperature distribution—enter into Xj. Our goal is to use a form that is
both flexible and capable of providing precise estimates.12 Second, consistent estima-
tion of β and γ requires that unobserved factors ξj be uncorrelated with Xj and Dj.
In the absence of instrumental variables, orthogonality between ξj and Xj is a neces-
sary assumption that cannot be tested. We therefore assess the reliability of our esti-
mates of β by studying their sensitivity to a variety of alternative specifications. Ulti-
mately, we view the estimates’ robustness across these regressions as arguing in favor
of their interpretation as preference parameters, but it is important to caveat that
these results cannot definitively rule out the presence of confounding factors.

12. We could in principle model rainfall, humidity, and sunshine as flexible distributions,
as we do with temperature. We instead simply include these variables as linear regressors, for
two reasons. First, these three variables are highly collinear even when entered linearly; al-
lowing for substantial nonlinearities only exacerbates this problem. Second, we wish to focus
primarily on temperatures, given that in our climate change application only temperatures
change substantially. We have estimated a binned specification for precipitation (6 bins) and
humidity (10 bins), similar to that in Barreca (2012); this specification yields similar results to
those shown here. Results are available upon request.
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We model the WTP for exposure to an additional day at temperature t, relative
to a day at 65 °F, as the function f (t).13 The temperature 65 °F is a natural nor-
malization point because conventional HDD and CDD calculations treat 65 °F as a
“bliss point” at which neither heating nor cooling is required. If discomfort from heat
and cold, in terms of WTP, follow HDD and CDD, then f (t) is a two-piece linear
function with the kink point at 65 °F. One of our objectives is to test whether f (t)
follows this functional form.

Given our data, the most flexible possible model for f (t) would include a dummy
variable for each 0.9 °F temperature bin, in which each coefficient would signify a
WTP relative to the bin containing 65 °F. This model is impractical, however, as we
have too little data to provide estimates that are precise enough to be meaningful.14

Instead, we model f (t) using cubic splines per (5)

f ðtÞ = o
S

s=1

βsSsðtÞ; ð5Þ

in which S1(t) through SS(t) are standard basis functions of a cubic B-spline of degree
S. We space the knots of the basis functions evenly on the cumulative distribution
function of the population-weighted average temperature distribution.15 This spacing,
rather than even spacing over the unweighted temperature support, clusters the nodes
in the center of the distribution where the data are richest, improving flexibility in this
region.

13. This specification, under homogeneous preferences, disallows nonlinear effects of heat
or cold, in which the WTP to avoid an additional day of extreme temperature increases with
the number of days of extreme temperatures. It also disallows a preference for “seasonality,”
which would be manifest as a lower WTP to avoid heat (cold) in a location with severe win-
ters (summers). Nonlinear effects and preferences for seasonality are, however, captured by
our heterogeneous preference specification, which allows the MWTP for any temperature bin
to vary with the distribution of realized temperatures. We find that sorting and adaptation
effects outweigh nonlinear damage effects, as discussed in section 4 (especially for cold weather;
see panels A and B of fig. 6). Overall, we do not find consistent evidence of a preference for
seasons, as shown in appendix figure A1.1, which plots the MWTP for 40 °F and 80 °F
as functions of CDD and HDD. These plots should slope upward when households prefer
seasons.

14. We have experimented with wider bins and found that bins approximately 10 °F wide
are necessary for reasonable precision. In table A1.1 in theappendix, column R12 shows that
such a binned specification yields similar qualitative results to those discussed below. The binned
WTPs are plotted in appendix figure A1.8. We find the continuous splines more appealing
because we do not believe that human comfort changes discontinuously every 10 degrees.

15. The support of the contiguous US temperature distribution ranges from –39.1 °F to
111.2 °F, covering 167 0.9 °F bins. For a cubic spline of degree S, there are S – 2 nodes, in-
cluding the nodes at the endpoints. In the 7th degree cubic spline that we ultimately focus on,
the three interior nodes are located at 44.15, 58.55, and 71.15 °F (these temperatures are the
centers of the relevant bins).
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Defining Njt as the average number of days per year at location j for which the
average temperature is between t and t + 0.9, we flexibly estimate climate preferences
by substituting into (4) the product of the spline function in (5) with Njt, summed
over all temperature bins:

Q̂ j = o
t

Njt f ðtÞ þ βrRainj þ βhHumidj þ βsSunj þ γ˙Dj þ ξ j

= o
S

s = 1

βs

�
o
t

NjtSsðtÞ
�
þ βrRainj þ βhHumidj þ βsSunj þ γ˙Dj þ ξ j:

ð6Þ

As a reference case, we include in Dj the “full set” of both geographic and demo-
graphic controls described above. In all of our regressions, we weight each PUMA
(observation) by its population.16 For inference, we use standard errors that are clus-
tered to allow for arbitrary spatial correlation of residuals across PUMAs within each
state (Arellano 1987; Wooldridge 2003).17

3.2. Homogeneous Preference WTP Estimates

Estimating the Shape of f (t)

Figure 4 presents our estimates of f (t) using 5th through 10th degree splines, given
our reference case controls described in section 3.1. In each panel, the plotted esti-
mate of the f(t) curve is the MWTP for a day at temperature t rather than a day at
65 °F, measured as a fraction of income. Each panel also depicts, for reference, the
present and future (2070–99, A2 scenario) US population-weighted average tempera-
ture distributions. While the 5th degree spline appears too restrictive, and the 10th de-
gree too noisy, several regularities emerge from the set of plots. First, the WTP curves
consistently have an interior maximum near 65 °F. We view this result—which is
driven by the data and not “forced” by our QOL variable or functional form—as an
important validation of our model and empirical strategy, since it accords with the
intuition underlying HDD and CDD that WTP is maximized at 65 °F. Second,
there are too few days with average temperatures over 90 °F to permit precise infer-
ence over this range, as evinced by the extremely wide standard error bands. Third, it
appears that WTP departs nonlinearly away from 65 °F, undermining the restriction
from the HDD/CDD model that f (t) is linear. In particular, the slopes of the WTP

16. As shown in appendix table A1.1, column R11, this weighting does not materially
affect the estimates.

17. We have also experimented with clustering at the MSA level (in which PUMAs that
are not part of an MSA are clustered within each state) and census division level. These ap-
proaches lead to estimated standard errors that are only slightly smaller and larger, respectively,
than those presented here. When clustering on census divisions (of which there are nine) we
use the cluster wild bootstrap to improve small sample performance (Cameron, Gelbach, and
Miller 2008). This specification is displayed in column R14 of appendix table A1.1.
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curves tend to be steep on either side of 65 °F but then level off at more extreme
temperatures. Fourth, the decline in WTP away from 65 °F is steeper on the right
than on the left, meaning that there is a greaterWTP to avoid heat than to avoid cold.

The result that WTP declines less steeply over extreme temperatures accords
with the intuition that households protect themselves from extremes by taking shel-

Figure 4. Estimated willingness to pay (WTP) for daily average temperature assuming
homogeneous preferences, cubic spline models. All specifications use the full set of geographic,
“other weather,” and demographic controls. MWTPs are expressed as a fraction of income and
normalized to zero at 65 °F. Each observation (PUMA) is weighted by its population in the
regressions. Standard errors are clustered on state. “Present” temperature distribution denotes
1970–99, and “future” denotes 2070–99. Both distributions are population-weighted US av-
erages. A color version of this figure is available online.
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ter in climate-controlled environments. Once the temperature is sufficiently uncom-
fortable that households spend little time outside, further increases in extreme tem-
perature are less important. This result is consistent with research by Graff Zivin and
Neidell (2012) that uses time-diary data to show that households spend less time
outside in cold or hot weather.

The result that, on the margin, increases in heat are worse than increases in cold
also follows intuition. Individuals can adapt to cold by wearing more clothing. How-
ever, options for thermoregulation are more limited in hot conditions.

The imprecision of our estimates at the extremes of the temperature distribution
inhibit the ability of spline-estimated WTP functions to inform the welfare effects of
climate change. This is true especially at the high end: days with average (not just high)
temperatures exceeding 90 °F are rare at present but common in climate change pro-
jections. To address this issue, we examine two functional forms that maintain flexibil-
ity in the interior of the temperature distribution while projecting WTP at the far
extremes.18 The first is a restricted 7th degree cubic spline, with WTP assumed to be
constant over the extreme 1% of realized temperatures.19 The second is a four-piece
linear spline, with kink points at 45 °F, 65 °F, and 80 °F, allowing for a projection
of decreasing WTP over extreme temperatures.20 This second specification permits
more straightforward hypothesis testing of how WTP changes over the temperature
distribution.

Panels A and B of figure 5, and columns I and II of table 2, present results for both
specifications, controlling for both geography and demographics. The point estimates
in table 2 can be interpreted as the WTP for each characteristic. In both specifica-
tions, WTP declines more steeply as temperatures increase away from 65 °F than as
they decrease from 65 °F. With the linear spline, we reject a null hypothesis that the

18. We are not the first to confront the issue of conducting inference at temperatures near
and beyond the limit of what is realized in present-day data. Prior work in the crop yield and
health literatures has assumed that the damage function is constant beyond the point at which
inference is no longer feasible (Deschênes and Greenstone 2007, 2011; Schlenker and Roberts
2009). The first of our two restricted specifications—a 7th degree cubic spline with a restric-
tion that MWTP is constant at the extremes—accords with this prior practice.

19. Specifically, we impose constant WTP over the bottom 0.5% and top 0.5% of the
population-weighted temperature distribution, covering temperatures less than 4.1 °F and
greater than 87.8 °F. We apply this imposition after estimating the full 7th degree spline
rather than beforehand, as reversing the order leads to unstable estimates at the cutoff points.
We focus on a 7th degree spline because it visually appears to strike a balance between flex-
ibility and precision. Using 6th or 8th degree splines instead does not substantially affect the
results.

20. The choices of 45 °F and 80 °F tend to yield the best fit to the data (per R2) in most
specifications. Alternative choices such as 50 °F or 75 °F do not substantially affect the pref-
erence or welfare estimates.
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Figure 5. Estimated willingness to pay (WTP) for daily average temperature assuming homo-
geneous preferences, with alternative controls and splines. Panels A, C, and E, use a 7th degree
cubic spline WTP model, restricted to be constant over the extreme 1% of the temperature dis-
tribution. Panels B, D, and E use a four-piece linear spline. Panels A and B include all geo-
graphic, “other weather,” and demographic controls. Panels C and D omit demographic controls.
Panels E and F include all controls and state fixed effects. MWTPs are expressed as a fraction of
income and normalized to zero at 65 °F. Each observation (PUMA) is weighted by its popula-
tion in the regressions. Standard errors are clustered on state. “Present” temperature distribution
denotes 1970–99, and “future” denotes 2070–99. Both distributions are population-weighted
US averages. A color version of this figure is available online.
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magnitudes of the slopes on either side of 65 °F are equal with a p-value of .001. Both
splines exhibit flatter slopes over the extremes than over the center of the distribution,
particularly on the cold side of 65 °F. For the linear spline, the change in slope at the
45 °F kink point is statistically significant (p = .005), although the change in slope at
80 °F is not (p = .523).

Thus, while we have some confidence in the result that extreme cold is not sub-
stantially more disamenable than moderate cold, the lack of statistical power over ex-
tremely hot days means that we are less confident in saying that about extreme ver-
sus moderate heat.21 The restricted cubic and linear spline specifications can therefore
be viewed as two plausible alternatives. The former is conservative in assessing the
WTP to avoid extreme heat because it assumes that WTP is constant over this range,
whereas the linear spline model is more aggressive as it extrapolates the (negative)
slope of theWTP function outside of the observed temperature range.

Nontemperature Climate Variables, Controls, and Robustness

The results in columns I and II of table 2 indicate that households have a strong
preference for sunshine, a mild preference for precipitation, and no statistically signif-
icant taste for humidity. Due to multi-collinearity, it is difficult to disentangle pref-
erences for these three climate variables: locations that are very sunny also tend to be
dry and nonhumid. Among the geographic control variables, we estimate strong tastes
for hilliness (average land slope), a taste for proximity to the ocean, but no strong
preference for proximity to a Great Lake. The estimated coefficients on the demo-
graphic control variables indicate that QOL increases with population density, educa-
tional attainment, average age, and percentage Hispanic, while it decreases in percent-
age black.

The demographic controls may themselves be endogenous, as demographic groups
may have different tastes and sort accordingly.22 These variables may also introduce
an “overcontrolling” problem if they are, at least in part, determined by climate. That
said, we believe that the benefits of controlling for demographics outweigh the costs.

21. The linear spline projection is sufficiently imprecise to the right of 80 °F that we also
cannot reject the hypothesis that WTP is constant over this range (p = .117).

22. The coefficient on population density is particularly difficult to interpret, since it cap-
tures unobserved amenities that come with population density (e.g., culture and restaurants) as
well as idiosyncratic household-specific valuations of a location. The former drives the coeffi-
cient on population density upward, while the latter drives it downward (because the cost of
living must fall [or wages must rise] to attract additional households). Empirically, the amenity
aspects of population density appear to dominate, since we estimate a positive coefficient on this
variable. Our estimated WTP for climate is robust to excluding population density from the
specification. In section 6, we discuss the related issue of adjusting our QOL measure to ac-
count for changes in population between 1990 and 2000.
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First, their inclusion substantially improves the precision of the estimated WTP for
climate. Panels C and D in figure 5, and columns III and IV of table 2, present esti-
mates of specifications that do not include the demographic variables. These speci-
fications have notably wider WTP confidence intervals and less than one-half the R2

of those that include demographics (using the cubic spline model, the standard errors
on the estimated MWTPs for days at 40 °F and 80 °F are 26% and 55% larger, re-
spectively, when the demographic controls are excluded). Second, including demo-
graphic variables helps guard against omitted variables bias and, in this case, provides
evidence that such bias may not be a substantial concern. Although the demographic
variables are powerful correlates of QOL, as evidenced by their large effect on R2,
they have only a modest effect on the estimated WTPs for the climate variables. Nor,
as we discuss in section 5, do they substantially affect our estimates of the welfare
impact of climate change. We obtain these results despite evidence of some correla-
tion of the demographic covariates—especially the percentage of high school graduates
and the percentages of minorities—with warm weather, as shown in table A1.2.23

Overall, following the logic of Altonji et al. (2005), our results suggest that if unob-
served demographics substantially bias our climate preference and welfare estimates,
they would have to be more strongly correlated with climate than the “headline” ob-
servable demographics included in our regressions.24

Specifications that include state fixed effects (FE) along with demographics are
examined in figure 5 panels E and F, and columns V and VI of table 2.25 These spec-
ifications rely solely on within-state variation in climate for identification. Despite

23. As an additional robustness check, we have found that adding squared terms of the
demographic variables does not substantially affect the results. See table A1.1, column R9. It
may be that the semiparametric temperature functions we use are less susceptible to the raw
correlations shown in table A1.2, or that the partial correlations after controlling for the
other weather variables and geographic controls are relatively small. We have also controlled
for public spending on parks (though data are available for only 1,970 PUMAs) and found
that these controls do not qualitatively affect our estimates.

24. In other settings for hedonic studies—for example, measurements of the WTP for
clean air—it has been shown that estimates are sensitive to the inclusion or exclusion of
demographic controls (see, e.g., Chay and Greenstone 2005). In such cases, the source of
bias is often intuitive. For example, emitters of pollutants are often concentrated in industrial
areas that tend to be populated by lower-income households. With regard to climate, how-
ever, a source of omitted variable bias from demographics is less obvious ex ante because a
wide range of demographic groups and urban vs. rural locations can be found in essentially
every climate zone. Our result that adding demographic variables to the specification does
not substantially affect the estimated WTP for climate accords with this intuition.

25. As shown in appendix table A1.1, specification R10, using census division fixed
effects rather than state fixed effects does not result in a substantial difference relative to the
non-FE estimate.
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this substantial change in identifying variation, we still find in panel E that WTP is
maximized near 65 °F. The inclusion of state FE does result in a loss of precision and
an increase in the estimated WTP to avoid cold. This increase may arise from the fact
that the statistical power of the FE estimates comes from large, populous states with a
large number of PUMAs and a broad range of climates. Thus, states like California
and Texas are more influential than states in the Northeast and Midwest. If resi-
dents of these large, warm states have sorted because they are more averse to cold—a
possibility consistent with our findings in section 4—this may explain the difference
between the FE and non-FE estimators. Nonetheless, the estimated WTP to avoid
cold remains smaller than the estimated WTP to avoid heat, though this difference is
no longer statistically significant. The estimates are sufficiently imprecise that the state
FE estimates are not statistically significantly different than those without FE.26

Estimated preferences derived from additional alternative specifications are pre-
sented in appendix table A1.1. These regressions explore alternative control variables,
specifications for f(t), subsamples of the data (e.g., omitting superstar cities), and weight-
ing schemes. This table also provides estimated impacts of climate change on amenity
values and estimates that allow for preference heterogeneity, as discussed below. Over-
all, our conclusions do not qualitatively change across these specifications.

4. ESTIMATION OF WTP FOR CLIMATE WITH

HETEROGENEOUS PREFERENCES

4.1. Empirical Strategy

Section 3 and prior work on climate amenity valuation has assumed that households
share homogeneous preferences for climate. Here, we relax this assumption and al-
low households to sort into locations that suit their preferences (noting that hetero-
geneity may also reflect households’ adaptation to their local climate). Estimation
under these more relaxed conditions is based on the framework developed by Bajari
and Benkard (2005) and applied by Bajari and Kahn (2005). The intuition of this
approach lies in the first-order condition of equation (3) and is illustrated in figure 1,

26. We test the null hypothesis that the state FE are uncorrelated with the climate
variables via block wild bootstrapping, clustering on state (200 repetitions). For each draw, we
estimate preferences both with and without state FE. We then use all draws to obtain a
standard deviation of the difference between the estimators. This procedure, unlike a tradi-
tional Hausman test, does not require that the non-FE estimator be efficient (see Cameron
and Trivedi 2005, 718). We find that we cannot reject equality of the WTP for 40 °F across
the estimators (the p-values are .858 for the cubic spline and .603 for the linear spline) nor
equality of the WTP for 80 °F (the p-values are .445 for the cubic spline and .560 for the
linear spline). We do, however, marginally reject equality of the welfare impact of climate
change across the two estimators (the p-values are .086 for the cubic spline and .076 for the
linear spline).
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which depicts an equilibrium in which the only characteristic is average summer
temperature, Ts. Given a nonlinear hedonic price function Q̂ðZj; ξ jÞ, the MWTP of
households located at j for a characteristic k (e.g., a day in a given temperature bin)
is simply given by ∂Q̂ðZj; ξ jÞ=∂Zk. Thus, flexible estimation of Q̂ðZj; ξ jÞ allows us to
recover the distribution of MWTP for each characteristic k across the population of
households. In figure 1, for example, the depicted equilibrium is consistent with pos-
itive sorting in which households with a high MWTP to avoid heat settle in areas with
low summer temperatures. In contrast, a concave equilibrium price function would re-
flect nonlinear damages from heat, so that the MWTP to avoid heat would be greater
for hot locations than for mild locations.

To flexibly estimate Q̂ðZj; ξ jÞ, we use local linear regression per Fan and Gijbels
(1996). We suppose that, local to location j*, Q̂ðZj; ξ jÞ satisfies (7):

Q̂ j = o
k

β j�
k Zjk þ ξ j: ð7Þ

In (7), the implicit prices β are superscripted by j*, as we estimate a distinct set of
prices at each location. We obtain the β j� at each location via weighted least squares
per (8) and (9):

β j� = arg min
β
ðbQ – ZβÞ0WðbQ –ZβÞ ð8Þ

bQ = bQj

h i
;Z = Zj

� �
;W = diag KhðZj –Zj�Þ

� �
; ð9Þ

where W is a matrix of kernel weights defined so that locations that are similar to j*
in characteristics receive the most weight in the regression.27 This approach allows
households in relatively hot or cold locations to have different MWTPs to avoid de-
partures from mild climates. To calculate W, we use a normal kernel function with
a bandwidth h of 2, per (10) and (11) below.28 The term σ̂k denotes the standard
deviation of characteristic k across the sample:

27. In principle, W can include every characteristic in the model, so that preferences can
vary in the cross-section not only with the climate variables but also with the controls. In
practice, however, we include only the temperature spline basis functions in W, since including
the controls requires a very large bandwidth in order to avoid collinearity in the weighted
covariate matrix. In addition, when implementing our procedure with the restricted 7th degree
spline specifications, we only include a 5th degree cubic spline in W. Including the full 7th
degree cubic spline in W results in very noisy estimates of temperature preferences at extreme
locations (such as northwest Minnesota) that have few neighbors in climate space.

28. We follow Bajari and Benkard (2005) and Bajari and Kahn (2005) in choosing a normal
kernel and in choosing a bandwidth that yields visually appealing preference estimates, in the
sense that estimated MWTP varies smoothly over characteristics space (as in fig. 6). In contrast,
using leave-one-out cross-validation we find an “optimal” bandwidth of 0.22 in the cubic spline
preference specification. This small bandwidth leads to very noisy and imprecise preference
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KðZÞ = ∏
k

NðZk=σ̂kÞ ð10Þ

KhðZÞ =KðZ=hÞ=h: ð11Þ

Ideally, our estimator would allow for heterogeneity in households’ MWTP for
all local characteristics, not just the temperature profiles. Were the choice set contin-
uous in characteristics, point identification of preferences for all characteristics at
each location would indeed be possible. In our setting, however, there is a discrete
number of 2,057 PUMAs, which implies that households’ preferences are only set
identified. That is, there is a range of MWTPs such that each household would
prefer to stay in its PUMA rather than move. We study these identified sets using a
Gibbs sampling method per Bajari and Benkard (2005) and find that they are often
large enough to be uninformative when households are permitted to have heteroge-
neous preferences over all characteristics (including the control variables).29 Our main
specifications therefore maintain the restriction that households share a homogeneous
MWTP for nontemperature characteristics.30 With this restriction, we find that the
identified sets of MWTPs for temperature are sufficiently small to closely approxi-
mate point identification. The results presented below therefore follow Bajari and
Kahn (2005) in treating MWTP as point identified at each location. Appendix 4 pre-
sents set identified estimates and discusses our set identification procedure in detail.

Finally, we emphasize that we only identify the MWTP of each household for
each temperature at its chosen climate and cannot identify its WTP for a large change
in climate, over which MWTP may vary. In figure 1, for instance, the MWTPs at
locations A and B are identified, but the shapes of the indifference curves are not.
Estimating the welfare impacts from nonmarginal changes in climate therefore requires
assuming a functional form for households’ utility. We focus on welfare estimates that
assume the indifference curves are linear, with a slope equal to the estimated MWTP.
This approach is transparent, permits an apples-to-apples comparison to the homoge-
neous preference estimates, and is conservative: allowing for concavity would unambig-

estimates as well as an extremely large estimated amenity loss from climate change (18.5% of
income under the A2 scenario). In general, the estimated amenity loss increases as the band-
width becomes smaller, so our bandwidth choice of 2 is conservative.

29. Bajari and Benkard (2005) find similar results when the number of parameters over
which preferences may be heterogeneous is permitted to increase, relative to a fixed choice set.

30. Prior to running the local linear regression, we enforce preference homogeneity over
the nontemperature variables by stripping their effects from Q̂ using the OLS estimates from
section 3 (this approach follows an example given in Bajari and Benkard [2005]). Thus, the
only characteristics involved in the local linear regression are the temperature spline basis
functions.
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uously increase the estimated amenity losses, as the cost of each additional hot day
would rise (and the benefit from each reduction in cold days would fall).

The assumption that households’ utility functions are linear in characteristics cre-
ates the problem, however, that the second-order condition for utility maximization
may not hold if the hedonic price function is not globally convex. Because we ulti-
mately find that the Q̂ðZj; ξ jÞ function is slightly concave in some dimensions, we
have studied a specification in which households’ utility functions are sufficiently
concave that their utility is maximized at their present location. Our procedure for
estimating this specification is discussed in appendix 3. We find that allowing for
concavity in the utility function increases the estimated losses from climate change
by roughly 0.4 percentage points relative to the results given in section 5 (for the
cubic spline model in col. I of tables 3 and 4).

4.2. Heterogeneous Preference MWTP Estimates

Estimated MWTPs for temperature by PUMA are graphed in figure 6: panels A
and C from the restricted cubic spline, panels B and D from the linear spline, all
controlling for geography and demography, but not state FE. Panels A and B present
the distribution of MWTP, scaled up by 365, for an additional day at 40 °F relative
to a day at 65 °F, as a function of HDD. Each of the plotted points represents the
preferences of a specific PUMA in the data. The strong upward slope in both panels
indicates that households with the most negative MWTP for cold weather tend to be
located in areas with the fewest HDDs (the reduction in the MWTPs’ magnitudes
near zero HDD or CDD may simply reflect large confidence intervals; see standard
deviations for the MWTP estimates in appendix fig. A1.6). This result is consistent
both with households sorting based on their aversion to cold and with adaptation to
cold climates. Panels C and D, in contrast, examine the MWTP for an additional day
at 80 °F as a function of CDD. Panel C, which uses the restricted cubic spline model,
exhibits a weak downward slope, consistent with residents of hot areas being more heat
averse on the margin and indicating mild concavity in households’ utility functions
rather than sorting. This result also suggests that households have only a limited ability
to adapt to heat, relative to their ability to adapt to cold. The linear spline model in
Panel D, however, indicates a positive slope, suggestive of some sorting on willingness
to avoid heat, though the overall heterogeneity in MWTP is still smaller than that for
the willingness to avoid cold.

An alternative depiction of heterogeneous climate preferences is given in appendix
figure A1.2. This figure plots MWTP curves under the cubic spline model at a few
select cities. Beyond showing that the magnitude of households’ MWTP to avoid
cold is negatively correlated with the amount of cold they face, this figure also shows
that the estimated maximum of the MWTP function occurs at slightly higher tem-
peratures in warmer locations, again consistent with sorting based on aversion to
cold or with adaptation.
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The average MWTPs to avoid 40 °F and 80 °F for the cubic and linear spline
models plotted in figure 6 are given in columns I and II of table 3. The average
MWTP to avoid heat exceeds that to avoid cold, consistent with the homogeneous
preference model (cols. I and II of table 2). Columns III–VI of table 3 proceed
through the same control variable specifications that were used in table 2, with similar
results. Appendix table A1.1, panel b provides estimates from numerous alternative
specifications.

5. ESTIMATED IMPACTS OF CLIMATE CHANGE

ON CLIMATE AMENITIES

In this section, we use climate preference estimates to calculate how predicted cli-
mate change may affect local amenity values. These results maintain technology and
preferences (specifically, WTP as a share of income) at their present levels and are

Figure 6. Estimated distribution of marginal willingness to pay (MWTP) for heat and cold
across public use microdata areas, assuming heterogeneous preferences. MWTPs are expressed
as a fraction of income, scaled up by 365, and normalized to zero at 65 °F. Each plotted point
denotes a PUMA-specific estimate of MWTP. Panels A and C use the restricted 7th degree
cubic spline model, and panels B and D use the four-piece linear spline. Models used in all panels
include the geographic, “other weather,” and demographic controls. Each observation (PUMA)
is weighted by its population in the regressions. A color version of this figure is available online.

Climate Change and American Quality of Life Albouy et al. 235

This content downloaded from 144.092.122.212 on March 04, 2016 13:37:47 PM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



best interpreted as welfare impacts that would occur if changes predicted for the end
of the century were to occur now, allowing for spatial adaptation (e.g., households in
the North adopting southern behaviors and levels of air conditioning penetration) to
occur instantly.

We focus first on the reference case model I from table 2, using the restricted cubic
spline under homogeneous preferences, with projections from the A2 scenario for
2070–99. Table 4 displays estimated changes in welfare for this specification (col. I)
and several variants. We project a net welfare loss of 2.28% of personal income, or
$195 billion per year (in year 2000 dollars),31 from decreased amenity value of cli-
mate. This loss is driven by the result that the WTP to avoid heat exceeds the WTP
to avoid cold, so that the welfare loss from hotter summers of –4.85% exceeds the gain
from warmer winters of 2.12%. These temperature-driven welfare losses are slightly
offset by increases in amenities from the small predicted changes to precipitation,
humidity, and sunshine. Results from the linear spline in column II predict slightly
higher welfare costs, with higher benefits from warmer winters and greater costs from
hotter summers. Finally, the bottom row of table 4 presents welfare impacts under the
alternative A1FI scenario, which predicts more extreme changes in temperature. This
scenario results in larger welfare effects from milder winters and hotter summers, so
that net welfare losses are roughly 3% of total income.

The geographic distributions of welfare changes for the restricted cubic and linear
spline specifications are shown in panels A and B of figure 7. Both maps show a few
areas in the Pacific Northwest, northern Michigan, and the upper Northeast—
accounting for about 6% of the population—for which we forecast a minor improve-
ment. The rest of the US population will experience losses. These are especially se-
vere in the Southeast and Southwest: some areas in Florida, Louisiana, Texas, and
California have expected losses greater than 4% of income. Much of the country, as
far north as the Dakotas, is expected to experience substantial losses as they lose many
days with moderate temperatures, which we estimate are highly valued.

The predictions of the two estimated temperature functions agree less in the center
of the country, where the restricted cubic spline predicts relatively small losses. This
result occurs because summer temperatures in this area are already sufficiently hot
that residents are on the flat portion of the WTP curve. In contrast, the linear spline
predicts relatively large welfare losses, as already hot summer days become hotter.
These predictions are imprecise as the historical climate record offers too few ex-
tremely hot days to allow a precise claim about WTP over such extreme heat.

Appendix table A1.1 presents estimates of amenity losses from several other alter-
native specifications with varying control structures, generally finding similar results,

31. The dollar figure is based on year 2000 total personal income of $8.576 trillion in
the 48 contiguous states.
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Figure 7. Predicted future changes in quality of life, expressed as a percentage of income, due
to climate amenities. A2 scenario for 2070–99, using estimates from the homogeneous prefer-
ence model. In 2014, one percentage point of average income corresponded to $307 per person
annually. Thus < –4% connotes a loss of over $1,227 per person per year, –4% – –3% of $920
to $1,227, etc., while > 0% connotes a gain. Panel A uses the restricted 7th degree cubic spline
WTP model, per panel A of figure 5 and specification I of tables 2 and 4. Panel B uses the four-
piece linear spline WTP model, per panel B of figure 5 and specification II of tables 2 and 4. A
color version of this figure is available online.
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with welfare losses of 2% or more of income. Our results are largely unchanged if we
remove the demographic controls, although they do become less precise. The greatest
changes occur if we use estimates that include state FE, as seen in column III of table 4.
These estimates imply greater welfare gains from warmer winters and smaller losses
from hotter summers, resulting in a smaller net welfare loss closer to 1% of income.

Accounting for heterogeneous preferences yields a somewhat larger net amenity
loss of 2.79% of income, as shown in column IV of table 4. This difference is pri-
marily driven by the finding that households in the North are the least averse to
cold. As a result, the predicted reduction in cold days is negatively correlated spatially
with the MWTP to avoid those cold days, so that those who see the greatest re-
duction of winter are those who would benefit from it the least. The spatial distribu-
tions of estimated welfare losses for specifications IV and V in table 4 are shown in
appendix figure A1.7

For small changes in climate, the estimated welfare effects shown in table 4 provide
accurate first-order approximations, robust to migration via the envelope theorem.
However, if climate changes are sufficiently large, the second-order effect of migration
may be material. We assess the importance of migration with a parsimonious model
under homogeneous preferences. Intuitively, households will leave areas with worsen-
ing climates and migrate toward areas with improving climates. We model the case in
which mobility responses are proportional to changes in QOL, ΔQ̂ j, and households
remain within the United States. Thus, changes in the logarithm of population den-
sity of location j, ΔN̂j, depend on changes in QOL at j relative to the average QOL
change in the United States, ΔQ̂avg , per the formula

ΔN̂j = εN;QðΔQ̂ j – ΔQ̂avgÞ; ð12Þ

where εN;Q is the long-run elasticity of population with respect to changes in quality of
life. Although direct empirical evidence on this elasticity is scant, work by Albouy and
Stuart (2015) suggests a value of 8.32 In other words, a 1% increase in QOL will lead
to an 8% increase in population density, taking into account long-run responses in
housing and migration.

Allowing for adaptive migration per equation (12) we estimate that for our base-
line specification I, the average absolute value of the population change across all
PUMAs is 10.3%. This migration only modestly changes our estimated aggregate

32. This elasticity incorporates five different responses to a change in QOL: (i) housing pro-
ducer substitution away from land; i.e., housing supply elasticity, (ii) traded-good producers’
substitution away from land, creating diminishing returns from fixed factors, (iii) consumers’
substitution away from housing; i.e., crowding into the existing housing stock, (iv) willingness of
households to consume less overall (net of housing) in high QOL areas, and (v) endogenous
agglomeration economies and congestion effects from changes in population density.
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welfare loss from 2.28% to 2.01%. Adaptive migration only slightly mitigates welfare
losses because only a few areas actually improve, and migration to these areas is con-
strained by crowding.

6. ALTERNATIVE MEASURES OF QOL

In section 1, we emphasized the importance of correctly weighting wage and housing-
cost and wage differentials when calculating our QOL measure, while also making a
correction for commuting costs. In table 5, we examine climate-preference and wel-
fare estimates based on alternative measures. First, in column II, we use wage dif-
ferentials by place of residence rather than place of work, without correcting for
commuting. This change slightly attenuates the WTP estimates, leading to smaller
inferred damages. Intuitively, the wage and commuting correction to QOL does not
substantially affect the WTP estimates because these factors operate on a small geo-
graphic scale that is likely orthogonal to climate variation. We next consider the sep-
arate roles that wages and housing costs play in determining QOL. In column III, we
measure QOL using only the additive inverse of wages (so that low wages denote
higher QOL). Without state FE, this change causes extreme temperatures to be valued
positively; with fixed effects, the specification finds a positive (though statistically in-
significant) WTP for heat, recalling the results of Hoch and Drake (1974) and Moore
(1998).33 Conversely, when only housing costs are used to measure QOL in col-
umn IV, the estimates exaggerate households’ aversion to extreme temperatures and
damages to climate change. Column V uses a QOL measure similar to Roback (1982),
Nordhaus (1996), and Sinha and Cropper (2013) that, relative to our measure, puts
2.7 times more weight on wages relative to housing costs (by not accounting for tax-
ation and nonhousing local costs). Not surprisingly, these results resemble those based
only on wages, albeit less extremely. The dramatic difference in results between the
specifications with and without fixed effects also evokes the lack of robustness that
Nordhaus (1996) finds using his QOLmeasure.

Columns VI and VII of table 5 return to our baseline QOL measures but alterna-
tively use wage levels (and income and expenditure shares sw and sy) for workers
without a college degree or with one, to test whether these two groups value amenities
differently. Our findings suggest that more educated workers may be relatively heat
averse.

As discussed in section 1, a potential concern regarding our baseline QOL mea-
sures is that our estimates of the PUMA level wage differentials ŵj are not robust to

33. In the column III state FE specification, the estimated welfare impact is similar to that
obtained with the reference case QOL measure despite the very different MWTPs at 40 °F
and 80 °F. This result occurs only because the estimated MWTP is very large and positive
over extreme cold <30 °F. The estimates in column V with state FE behave similarly.
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sorting based on unobserved skills or a spatial match component of wages. We ad-
dress this concern in several ways. First, column VIII of table 5 presents results from
a specification in which we adopt the procedure used in Dahl (2002) to adjust the ŵj

for selective migration. In our wage equation, we include a flexible control function
for each individual’s probability of moving from his or her state of birth to the cur-
rent state, as well as the probability of staying in the state of birth, based on the in-
dividual’s observed demographic characteristics.34 This adjustment will decrease the
estimated ŵj (and therefore increase the estimated Q̂ j) for PUMAs with a relatively
high rate of in-migration to the extent that in-migrants earn relatively high wages. As
shown in column VIII, this adjustment to our QOL estimates does not substantially
affect our preference and welfare estimates.

As an alternative and closely related approach for addressing selective migration,
we have also adjusted our baseline QOL estimates for each PUMA by adding a
correction equal to the PUMA’s rate of net in-migration between 1990 and 2000 (in
percent) multiplied by a mobility cost estimate from Notowidigdo (2013).35 This
adjustment explicitly increases the estimated QOL for locations that are growing
relatively quickly. We find that this adjustment modestly increases the estimated
aversion to cold and slightly attenuates the estimated welfare loss under the A2 model
(by 0.3% of income). Finally, we have estimated a specification that insulates our
estimates from selective migration to “superstar cities” by dropping superstar metropol-
itan areas (as defined in Gyourko, Mayer, and Sinai [2013]) from the sample (we drop
442 of the 2,057 PUMAs in the sample). We find that doing so also modestly de-
creases the estimated MWTPs and welfare impact, without qualitatively affecting our
conclusions (see appendix table A1.1, col. R15).

34. Per Dahl (2002), we estimate these probabilities by category according to various de-
mographic characteristics. We use the exact same categories as Dahl (2002) for movers (20 for
each state) and stayers (70). We also add a separate mover category, “birth-state,” for those
born outside the United States. As Dahl only used male, white, and ages 25–34, we create
12 times the number of original categories to account for female, nonwhite, and age categories
35–44 and 45–55. To identify the wage intercepts across states, we constrain the coefficients in
the control function to be the same across states, unlike in Dahl (2002).

35. Notowidigdo (2013) allows for heterogeneity in mobility costs and estimates a mobility
cost elasticity, which dictates how the mobility cost of the marginal migrant increases with the
number of migrants. This elasticity is appropriate for adjusting our QOL estimates because it is
the marginal migrant that determines market prices and wages. Our calculations use a weighted
average of Notowidigdo’s (2013) estimated elasticities for high-skill and low-skill workers (0.066
and 0.065 respectively; see table 7 in his paper). These estimates are identified from plausibly
exogenous Bartik (1991) labor demand shocks and correspond to migration over a 10-year pe-
riod, thereby aligning with our 1990 to 2000 migration rates. We also use Notowidigdo’s (2013)
curvature parameters (betas) in specifying the mobility cost function.
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7. CONCLUSIONS

This paper illustrates the ability of the Rosen-Roback hedonic framework, when
properly calibrated, to recover willingness to pay for nonmarket goods such as climate.
By using a quality of life measure that is carefully constructed from local wage and
housing price differentials in the contiguous United States and by adopting a flexible
model of climate based on local temperature distributions, we obtain estimates of
households’ valuation of climate amenities that both accord with intuition and are
generally robust to a wide range of empirical specifications. We find that households
(1) place the most value on temperatures near 65 °F, (2) tend to dislike marginal in-
creases in heat more than marginal increases in cold, and (3) suffer less from marginal
increases in cold or heat once the temperature is sufficiently cold or hot (although
inference is weak for hot weather). Finally, we find evidence of heterogeneity in these
preferences, with households that are most averse to cold living in the South, consis-
tent with models of both sorting and adaptation.

When we apply our estimates to value the amenity impacts of climate change, we
estimate an average US welfare loss between 1% and 4% of income per year by 2070–
99 under “business as usual.” Most areas in the United States are predicted to experi-
ence losses, as many pleasantly warm days will be lost while uncomfortably cold days
will only be moderately abated. These estimates are similar in magnitude to the per-
centage losses in GDP (market goods) predicted by Nordhaus (2007) and Stern (2007)
for 2100 under business as usual, suggesting that nonmarket amenity benefits alone
may justify the mitigation costs discussed in their studies.36

The greatest limitation to our empirical method is that we have little statistical
power to make inferences regarding households’ willingness to pay (WTP) to avoid
temperatures beyond the limits of the current temperature distribution. The data
provide only limited guidance as to how WTP should be extrapolated over extremely
hot temperatures that have yet to be realized. Should the WTP to avoid heat actually
increase nonlinearly over the extremes, our damage estimates will be too conservative,
particularly in the southern United States.

REFERENCES

Albouy, David. 2012. Are big cities bad places to live? Estimating quality of life across metropolitan areas.

NBER Working paper 14472, National Bureau of Economic Research, Cambridge, MA (original

November 2008, revised May 2012).

Albouy, David, and Bert Lue. 2015. Driving to opportunity: Local wages, commuting, and sub-

metropolitan quality of life. Journal of Urban Economics 89:74–92.

36. The Nordhaus and Stern market damage estimates of 3% and 2.9% apply to world-
wide GDP, not US GDP.

Climate Change and American Quality of Life Albouy et al. 243

This content downloaded from 144.092.122.212 on March 04, 2016 13:37:47 PM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).

http://www.journals.uchicago.edu/action/showLinks?crossref=10.3386%2Fw14472
http://www.journals.uchicago.edu/action/showLinks?crossref=10.3386%2Fw14472
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1016%2Fj.jue.2015.03.003


Albouy, David, and Bryan Stuart. 2015. Urban population and amenities: The neoclassical model of

location. NBER Working paper 19919, National Bureau of Economic Research, Cambridge, MA

(original February 2014, revised September 2015).

Altonji, Joseph G., Todd E. Elder, and Christopher R. Taber. 2005. Selection on observed and unob-

served variables: Assessing the effectiveness of Catholic schools. Journal of Political Economy 113 (1):

151–84.

Arellano, M. 1987. Computing robust standard errors for within-groups estimators. Oxford Bulletin of

Economics and Statistics 49 (4): 431–34.

Bajari, Patrick, and C. Lanier Benkard. 2005. Demand estimation with heterogeneous consumers and un-

observed product characteristics: A hedonic approach. Journal of Political Economy 113 (6): 1239–76.

Bajari, Patrick, and Matthew E. Kahn. 2005. Estimating housing demand with an application to ex-

plaining racial segregation in cities. Journal of Business and Economic Statistics 23 (1): 20–33.

Barreca, Alan I. 2012. Climate change, humidity, and mortality in the United States. Journal of Environ-

mental Economics and Management 63 (1): 19–34.

Barreca, Alan, Karen Clay, Olivier Deschênes, Michael Greenstone, and Joseph S. Shapiro. 2015. Adapt-

ing to climate change: The remarkable decline in the U.S. temperature-mortality relationship over the

20th century. NBERWorking paper 18692, National Bureau of Economic Research, Cambridge, MA

(original January 2013, revised March 2015).

Bartik, Timothy J. 1991. Who benefits from state and local economic development policies? W. E. Upjohn

Institute for Employment Research, Kalamazoo, MI.

Baum-Snow, Nathaniel, and Ronni Pavan. 2012. Understanding the city size wage gap. Review of Eco-

nomic Studies 79 (1): 88–127.

Blomquist, Glenn C., Mark C. Berger, and John P. Hoehn. 1988. New estimates of quality of life in urban

areas. American Economic Review 78 (1): 89–107.

Cameron, A. Colin, Jonah B. Gelbach, and Douglas L. Miller. 2008. Bootstrap-based improvements for

inferences with clustered errors. Review of Economics and Statistics 90 (3): 414–27.

Cameron, A. Colin, and Pravin K. Trivedi. 2005. Microeconometrics: Methods and applications. New

York: Cambridge University Press.

Chay, Kenneth Y., and Michael Greenstone. 2005. Does air quality matter? Evidence from the housing

market. Journal of Political Economy 113 (2): 376–424.

Chen, Yong, and Stuart S. Rosenthal. 2008. Local amenities and life-cycle migration: Do people move for

jobs or fun? Journal of Urban Economics 64 (3): 519–37.

Cragg, Michael, and Matthew Kahn. 1997. New estimates of climate demand: Evidence from location

choice. Journal of Urban Economics 42 (2): 261–84.

———. 1999. Climate consumption and climate pricing from 1940 to 1990. Regional Science and Urban

Economics 29 (4): 519–39.

Dahl, Gordon B. 2002. Mobility and the return to education: Testing a Roy model with multiple markets.

Econometrica 70 (6): 2367–2420.

Deschênes, Olivier, andMichael Greenstone. 2007. The economic impacts of climate change: Evidence from

agricultural output and random fluctuations in weather.American Economic Review 97 (1): 354–85.

———. 2011. Climate change, mortality and adaptation: Evidence from annual fluctuations in weather in

the US. American Economic Journal: Applied Economics 3 (4): 152–85.

———. 2012. The economic impacts of climate change: Evidence from agricultural output and random

fluctuations in weather: Reply. American Economic Review 102 (7): 3761–73.

244 Journal of the Association of Environmental and Resource Economists March 2016

This content downloaded from 144.092.122.212 on March 04, 2016 13:37:47 PM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).

http://www.journals.uchicago.edu/action/showLinks?crossref=10.1257%2Faer.102.7.3761
http://www.journals.uchicago.edu/action/showLinks?system=10.1086%2F498586
http://www.journals.uchicago.edu/action/showLinks?system=10.1086%2F427462
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1198%2F073500104000000334
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1016%2Fj.jue.2008.05.005
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1016%2Fj.jeem.2011.07.004
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1016%2Fj.jeem.2011.07.004
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1006%2Fjuec.1996.2027
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1016%2FS0166-0462%2898%2900046-5
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1016%2FS0166-0462%2898%2900046-5
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1093%2Frestud%2Frdr022
http://www.journals.uchicago.edu/action/showLinks?crossref=10.3386%2Fw19919
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1093%2Frestud%2Frdr022
http://www.journals.uchicago.edu/action/showLinks?crossref=10.3386%2Fw19919
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1111%2F1468-0262.00379
http://www.journals.uchicago.edu/action/showLinks?system=10.1086%2F426036
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1257%2Faer.97.1.354
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1162%2Frest.90.3.414
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1111%2Fj.1468-0084.1987.mp49004006.x
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1257%2Fapp.3.4.152
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1111%2Fj.1468-0084.1987.mp49004006.x


Fan, J., and I. Gijbels. 1996. Local polynomial modelling and its applications. London: Chapman & Hall.

Fisher, Anthony C., W. Michael Hanemann, Michael J. Roberts, and Wolfram Schlenker. 2012. The

economic impacts of climate change: Evidence from agricultural output and random fluctuations in

weather: Comment. American Economic Review 102 (7): 3749–60.

Frijters, P., and B. M. S. Van Praag. 1998. The effects of climate on welfare and well-being in Russia.

Climatic Change 39 (1): 61–81.

Glaeser, Edward L., and David C. Maré. 2001. Cities and skills. Journal of Labor Economics 19 (2): 316–

42.

Graff Zivin, Joshua, and Matthew Neidell. 2014. Temperature and the allocation of time: Implications

for climate change. Journal of Labor Economics 32 (1): 1–26.

Graves, Philip E. 1979. A life-cycle empirical analysis of migration and climate, by race. Journal of Urban

Economics 6 (2): 135–47.

Gyourko, Joseph, Christopher Mayer, and Todd Sinai. 2013. Superstar cities. American Economic Jour-

nal: Economic Policy 5 (4): 167–99.

Hoch, Irving, and Judith Drake. 1974. Wages, climate, and the quality of life. Journal of Environmental

Economics and Management 1 (4): 268–96.

IPCC (Intergovernmental Panel on Climate Change), Working Group I. 2007. Climate change 2007:

The physical science basis. In The Fourth Assessment Report of the Intergovernmental Panel on Climate

Change, ed. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and

H. L. Miller. New York: Cambridge University Press.

Kahn, Matthew E. 2009. Urban growth and climate change. Annual Review of Resource Economics 1:333–

50.

Kennan, John, and James R. Walker. 2011. The effect of expected income on individual migration de-

cisions. Econometrica 79 (1): 211–51.

Kuminoff, Nicolai V., and Jaren C. Pope. 2014. Do “capitalization effects” for public goods reveal the

public’s willingness to pay? International Economic Review 55 (4): 1227–50.

Maddison, David. 2003. The amenity value of the climate: The household production function approach.

Resource and Energy Economics 25 (2): 155–75.

Maddison, David, and Andrea Bigano. 2003. The amenity value of the Italian climate. Journal of Environ-

mental Economics and Management 45 (2): 319–32.

Mendelsohn, Robert, William D. Nordhaus, and Daigee Shaw. 1994. The impact of global warming on

agriculture: A Ricardian analysis. American Economic Review 84 (4): 753–71.

Moore, Thomas Gale. 1998. Health and amenity effects of global warming. Economic Inquiry 36 (3): 471–

88.

Nordhaus, William D. 1996. Climate amenities and global warming. In Climate change: Integrating science,

economics, and policy, ed. N. Nakicenovic, W. D. Nordhaus, R. Richels, and F. Toth. Laxenburg:

IIASA.

———. 2007. The challenge of global warming: Economic models and environmental policy. Vol. 4. New

Haven, CT: Yale University.

Notowidigdo, Matthew J. 2013. The incidence of local labor demand shocks. NBER Working paper

17167, National Bureau of Economic Research, Cambridge, MA (original June 2011, revised March

2013).

Peiser, Richard B., and Lawrence B. Smith. 1985. Homeownership returns, tenure choice and inflation.

American Real Estate and Urban Economics Journal 13 (4): 343–60.

Climate Change and American Quality of Life Albouy et al. 245

This content downloaded from 144.092.122.212 on March 04, 2016 13:37:47 PM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).

http://www.journals.uchicago.edu/action/showLinks?crossref=10.1257%2Fpol.5.4.167
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1257%2Fpol.5.4.167
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1111%2Fj.1465-7295.1998.tb01729.x
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1016%2FS0095-0696%2874%2980002-1
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1016%2FS0095-0696%2874%2980002-1
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1257%2Faer.102.7.3749
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1146%2Fannurev.resource.050708.144249
http://www.journals.uchicago.edu/action/showLinks?crossref=10.3386%2Fw17167
http://www.journals.uchicago.edu/action/showLinks?crossref=10.3982%2FECTA4657
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1023%2FA%3A1005347721963
http://www.journals.uchicago.edu/action/showLinks?crossref=10.3386%2Fw17167
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1111%2F1540-6229.00358
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1111%2Fiere.12088
http://www.journals.uchicago.edu/action/showLinks?system=10.1086%2F319563
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1016%2FS0928-7655%2802%2900024-6
http://www.journals.uchicago.edu/action/showLinks?system=10.1086%2F671766
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1016%2F0094-1190%2879%2990001-9
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1016%2FS0095-0696%2802%2900052-9
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1016%2FS0095-0696%2802%2900052-9
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1016%2F0094-1190%2879%2990001-9


Rehdanz, Katrin. 2006. Hedonic pricing of climate change impacts to households in Great Britain.

Climatic Change 74 (4): 413–34.

Rehdanz, Katrin, and David J. Maddison. 2005. Climate and happiness. Ecological Economics 52 (1): 111–

25.

———. 2009. The amenity value of climate to German households. Oxford Economic Papers 61 (1):

150–67.

Roback, Jennifer. 1982. Wages, rents, and the quality of life. Journal of Political Economy 90 (6): 1257–

78.

Rosen, Sherwin. 1974. Hedonic prices and implicit markets: Product differentiation in pure competi-

tion. Journal of Political Economy 82 (1): 34–55.

———. 1979. Wages-based indexes of urban quality of life. In Current issues in urban economics, ed.

P. Mieszkowski and M. Straszheim. Baltimore: Johns Hopkins University Press.

Savageau, David. 1999. Places rated almanac. Foster City, CA: IDG Books Worldwide.

Schlenker, Wolfram, W. Michael Hanemann, and Anthony C. Fisher. 2006. The impact of global warm-

ing on U.S. agriculture: An econometric analysis of optimal growing conditions. Review of Economics

and Statistics 88 (1): 113–25.

Schlenker, Wolfram, and Michael J. Roberts. 2009. Nonlinear temperature effects indicate severe damages

to U.S. crop yields under climate change. Proceedings of the National Academy of Sciences 106 (37):

15594–98.

Shapiro, P., and T. Smith. 1981. Preferences on non-market goods revealed through market demands.

Advances in Applied Microeconomics: A Research Annual 1:105–22.

Sinha, Paramita, and Maureen L. Cropper. 2013. The value of climate amenities: Evidence from U.S.

migration decisions. NBER Working paper 18756, National Bureau of Economic Research, Cam-

bridge, MA.

Stern, Nicholas. 2007. The economics of climate change: The Stern Review. New York: Cambridge Uni-

versity Press.

Timmins, Christopher. 2007. If you cannot take the heat, get out of the Cerrado . . . : Recovering the

equilibrium amenity cost of nonmarginal climate change in Brazil. Journal of Regional Science 47 (1):

1–25.

Tol, Richard S. J. 2002. Estimates of the damage costs of climate change, Part II. Dynamic estimates.

Environmental and Resource Economics 21 (2): 135–60.

———. 2009. The economic effects of climate change. Journal of Economic Perspectives 23 (2): 29–51.

Wooldridge, Jeffrey M. 2003. Cluster-sample methods in applied econometrics. American Economic Re-

view Papers and Proceedings 93 (2): 133–38.

246 Journal of the Association of Environmental and Resource Economists March 2016

This content downloaded from 144.092.122.212 on March 04, 2016 13:37:47 PM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).

http://www.journals.uchicago.edu/action/showLinks?crossref=10.1093%2Foep%2Fgpn028
http://www.journals.uchicago.edu/action/showLinks?system=10.1086%2F261120
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1111%2Fj.1467-9787.2007.00497.x
http://www.journals.uchicago.edu/action/showLinks?system=10.1086%2F260169
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1023%2FA%3A1014539414591
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1257%2Fjep.23.2.29
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1257%2F000282803321946930
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1162%2Frest.2006.88.1.113
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1257%2F000282803321946930
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1162%2Frest.2006.88.1.113
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1007%2Fs10584-006-3486-5
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1073%2Fpnas.0906865106
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1016%2Fj.ecolecon.2004.06.015


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AbadiMT
    /AbadiMT-Bold
    /AbadiMT-BoldItalic
    /AbadiMT-Condensed
    /AbadiMT-CondensedBold
    /AbadiMT-CondensedExtraBold
    /AbadiMT-CondensedLight
    /AbadiMT-ExtraBold
    /AbadiMT-ExtraBoldItalic
    /AbadiMT-ExtraLight
    /AbadiMT-ExtraLightItalic
    /AbadiMT-Italic
    /AbadiMT-Light
    /AbadiMT-LightItalic
    /Americana
    /Americana-Bold
    /Americana-ExtraBold
    /Americana-Italic
    /AvantGarde-Book
    /AvantGarde-BookOblique
    /AvantGarde-Demi
    /AvantGarde-DemiOblique
    /Century-Bold
    /Century-BoldItalic
    /Century-Book
    /Century-BookItalic
    /Copperplate-ThirtyAB
    /Copperplate-ThirtyBC
    /Copperplate-ThirtyOneAB
    /Copperplate-ThirtyOneBC
    /Copperplate-ThirtyThreeBC
    /Copperplate-ThirtyTwoAB
    /Copperplate-ThirtyTwoBC
    /Copperplate-TwentyNineAB
    /Copperplate-TwentyNineBC
    /Eurostile
    /Eurostile-Bold
    /Eurostile-BoldCondensed
    /Eurostile-BoldExtendedTwo
    /Eurostile-BoldOblique
    /Eurostile-Condensed
    /Eurostile-Demi
    /Eurostile-DemiOblique
    /Eurostile-ExtendedTwo
    /Eurostile-Oblique
    /Flora-Bold
    /Flora-Medium
    /FrizQuadrata
    /FrizQuadrata-Bold
    /Futura-Bold
    /Futura-BoldOblique
    /Futura-Book
    /Futura-BookOblique
    /Futura-ExtraBold
    /Futura-ExtraBoldOblique
    /Giovanni-Black
    /Giovanni-BlackItalic
    /Giovanni-Bold
    /Giovanni-BoldItalic
    /Giovanni-Book
    /Giovanni-BookItalic
    /GoudyOldStyT-Bold
    /GoudyOldStyT-ExtrBold
    /GoudyOldStyT-Regu
    /GoudyOldStyT-ReguItal
    /Helvetica
    /Helvetica-Black
    /Helvetica-BlackOblique
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Narrow
    /Helvetica-Narrow-Bold
    /Helvetica-Narrow-BoldItalic
    /Helvetica-Narrow-BoldOblique
    /Helvetica-Narrow-Italic
    /Helvetica-Narrow-Oblique
    /Helvetica-Oblique
    /ItcSymbol-Black
    /ItcSymbol-BlackItalic
    /ItcSymbol-Bold
    /ItcSymbol-BoldItalic
    /ItcSymbol-Book
    /ItcSymbol-BookItalic
    /ItcSymbol-Medium
    /ItcSymbol-MediumItalic
    /Myriad-Bold
    /Myriad-BoldItalic
    /Myriad-Italic
    /MyriadMM-It
    /Myriad-Roman
    /Myriad-Tilt
    /OCRB
    /OCRB-Alternate
    /Optimum-Bold-DTC
    /Optimum-BoldItalic-DTC
    /Optimum-Roman-DTC
    /Optimum-RomanItalic-DTC
    /Palatino-Bold
    /Palatino-BoldItalic
    /Palatino-Italic
    /Palatino-Roman
    /PostAntiquaBE-Medium
    /PostAntiquaBE-Regular
    /Sabon-BoldItalic
    /Sabon-Roman
    /Slimbach-Black
    /Slimbach-Medium
    /Symbol
    /SymbolCZ
    /Symbol-IA
    /Symbol-rA
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS
    /TimesNewRomanPS-Bold
    /TimesNewRomanPS-BoldItalic
    /TimesNewRomanPS-Italic
    /Times-Roman
    /ZapfChancery-Bold
    /ZapfChancery-Demi
    /ZapfChancery-Italic
    /ZapfChancery-Light
    /ZapfChancery-LightItalic
    /ZapfChancery-MediumItalic
    /ZapfChancery-Roman
    /ZapfDingbats
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    20.88000
    20.88000
    20.88000
    20.88000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ([Based on 'Sheridan_Books \(no Cropmarks\)'] Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        13.536000
        9
        35.928001
        9
      ]
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
  /SyntheticBoldness 1.000000
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




