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Abstract 

Testing Simulation and Structural Models  

with Applications to Energy Demand 

by  

Hendrik Wolff 

Doctor of Philosophy in Agricultural and Resource Economics 

University of California, Berkeley  

Professor Maximilian Auffhammer, Co-chair 

Professor Michael Hanemann, Co-chair 

This dissertation deals with energy demand and consists of two parts. Part one 

proposes a unified econometric framework for modeling energy demand and examples 

illustrate the benefits of the technique by estimating the elasticity of substitution 

between energy and capital. Part two assesses the energy conservation policy of 

Daylight Saving Time and empirically tests the performance of electricity simulation.  

In particular, the chapter “Imposing Monotonicity and Curvature on Flexible 

Functional Forms” proposes an estimator for inference using structural models derived 

from economic theory. This is motivated by the fact that in many areas of economic 

analysis theory restricts the shape as well as other characteristics of functions used to 

represent economic constructs. Specific contributions are (a) to increase the 

computational speed and tractability of imposing regularity conditions, (b) to provide 

regularity preserving point estimates, (c) to avoid biases existent in previous 

applications, and (d) to illustrate the benefits of our approach via numerical simulation 
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results. The chapter “Can We Close the Gap between the Empirical Model and 

Economic Theory” discusses the more fundamental question of whether the 

imposition of a particular theory to a dataset is justified.  I propose a hypothesis test to 

examine whether the estimated empirical model is consistent with the assumed 

economic theory.  Although the proposed methodology could be applied to a wide set 

of economic models, this is particularly relevant for estimating policy parameters that 

affect energy markets.  This is demonstrated by estimating the Slutsky matrix and the 

elasticity of substitution between energy and capital, which are crucial parameters 

used in computable general equilibrium models analyzing energy demand and the 

impacts of environmental regulations.  Using the Berndt and Wood dataset, I find that 

capital and energy are complements and that the data are significantly consistent with 

duality theory. Both results would not necessarily be achieved using standard 

econometric methods.  

The final chapter “Daylight Time and Energy” uses a quasi-experiment to 

evaluate a popular energy conservation policy: we challenge the conventional wisdom 

that extending Daylight Saving Time (DST) reduces energy demand.  Using detailed 

panel data on half-hourly electricity consumption, prices, and weather conditions from 

four Australian states we employ a novel ‘triple-difference’ technique to test the 

electricity-saving hypothesis.  We show that the extension failed to reduce electricity 

demand and instead increased electricity prices.  We also apply the most sophisticated 

electricity simulation model available in the literature to the Australian data.  We find 
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that prior simulation models significantly overstate electricity savings.  Our results 

suggest that extending DST will fail as an instrument to save energy resources.  
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Co-Chair Professor Maximilian Auffhammer 

 

________________________________________ Date ___________ 

Co-Chair Professor Michael Hanemann 
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Chapter 1 

Introduction 

With rising energy prices and pressing environmental concerns research on 

energy issues has become increasingly important. In particular, the growing 

worldwide demand for energy asks for new approaches to the analysis of energy 

policies and their effectiveness in terms of market outcomes, energy conservation and 

environmental issues. This dissertation Testing Simulation and Structural Models with 

Applications to Energy Demand contributes to these efforts and consists of three main 

chapters. 

The second chapter proposes a unified framework for estimation of structural 

models derived from economic theory.1 This work is motivated by the fact that in 

many areas of economic analysis, economic theory restricts the shape as well as other 

characteristics of functions used to represent economic constructs. Obvious examples 

are the monotonicity and curvature conditions that apply to utility, profit, and cost 

functions. Commonly, these regularity conditions are imposed either locally or 

globally. Here we extend and improve upon currently available estimation methods for 

imposing regularity conditions by imposing regularity on a connected subset of the 

regressor space. This method offers important advantages over the local approach by 

imposing theoretical consistency not only locally, at a given evaluation point but also 

within the whole empirically relevant region of the domain associated with the 

function being estimated. The method also provides benefits relative to the global 

                                                 
1 With Thomas Heckelei and Ron Mittelhammer. 
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approach, through higher flexibility, which generally leads to a better model fit to the 

sample data compared to the global imposition of regularity. Specific contributions of 

the second chapter are (a) to increase the computational speed and tractability of 

imposing regularity conditions in estimation, (b) to provide regularity preserving point 

estimates, (c) to avoid biases existent in previous applications, and (d) to illustrate the 

benefits of the regional approach via numerical simulation results. 

The third chapter discusses the more fundamental question of whether the 

imposition of a particular theory to a dataset is justified.  I propose a hypothesis test to 

examine whether the estimated empirical model is consistent with the assumed 

economic theory.  The test relies on the following principle: Behavior and/or 

assumptions on technology manifest itself in the form of “shape conditions.” For 

example, if a firm minimizes costs, then, by standard microeconomic theory, the dual 

cost function is concave and increasing in input prices. The intuition of the proposed 

test is simple: if for a given dataset we statistically reject the shape properties, then we 

reject the underlying behavioral assumptions of the economic theory.  To make the 

test work, we first estimate a flexible functional form without imposing the shape 

conditions. Secondly, we re-estimate the function subject to the shape conditions. 

Finally, the comparison of the restricted estimate to the unrestricted estimate provides 

the test statistic. The challenging part of this test is the estimation of the restricted 

model. Literature has suggested several shape-imposing estimators, but it is not clear 

which of these to use in practice. In this paper, we apply a series of such estimators, 

and their comparison within this context provides several insights into the advantages 
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and disadvantages. A motivating application exemplifies the use of the techniques 

developed in the first two chapters. Climate change concerns drive many countries to 

debate over imposing a tax on energy use intended to reduce carbon dioxide 

emissions. To quantitatively assess the costs and benefits of such a policy, an analyst 

requires two pieces of information: the own price elasticity of demand and secondly, 

the cross-price elasticities that describe the effects on important markets that are 

linked to energy; in fact with the tax policy in place, firms could substitute away from 

energy towards other inputs such as capital and labor—which may be less polluting 

but more costly. As another example the elasticity of substitution between capital and 

energy is considered. This is an important policy parameter as knowledge over the 

effect on the energy market as a response to a change in interest rate is a re-occurring 

question. The advantages of the proposed estimation and testing methods are hence 

illustrated using the Berndt and Wood industry data.  I show that this dataset is 

consistent with the assumption that firms minimize costs using standard 

microeconomic theory and I demonstrate that energy and capital are complements—a 

result that has been much debated.  Both findings would not necessarily be obtained 

when employing standard econometric methods to this dataset and hence has 

potentially important policy implications.  

The fourth chapter uses a quasi-experiment and challenges the conventional 

wisdom that extending Daylight Saving Time reduces energy demand.  The third 

chapter Daylight Time and Energy2, analyzes the effect of Daylight Saving Time 

(DST) on electricity demand.  This work is motivated by the fact that the U.S. 
                                                 
2 With Ryan Kellogg, fellow student at UC Berkeley. 
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beginning in 2007 will lengthen DST by one month, with the stated goal of reducing 

electricity consumption by 1%.  Similar proposals are under consideration in 

Australia, Great Britain and Japan where the reduction of greenhouse gas emissions is 

the primary policy objective; California has even petitioned for year-round DST, 

projecting savings of up to $1.3 billion annually.  We question the stated savings from 

prior DST studies, since they largely rely on simulation models rather than empirical 

evidence.  Our research exploits a natural experiment, in which parts of Australia 

extended DST by two months to facilitate the Sydney Olympic Games in 2000.  

Because the Olympics can directly affect the electricity demand we focus on Victoria, 

which did not host Olympic events, as the treated state and use its neighbor state South 

Australia, which did not extend DST, as the control.  Using detailed panel data on 

half-hourly electricity consumption, prices, and weather conditions from four 

Australian states we employ a novel ‘triple-difference’ technique to test the electricity-

saving hypothesis.  We show that the extension failed to reduce electricity demand and 

instead increased electricity prices.  We also scrutinize prior DST studies and apply 

the most sophisticated electricity simulation model available in the literature to the 

Australian data.  We find that all prior models significantly overstate electricity 

savings.  Our results suggest that DST will fail as an instrument to save energy 

resources.  
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Chapter 2 

Imposing Curvature and Monotonicity on Flexible Functional 

Forms: An Efficient Regional Approach 

2.1 Motivation and Literature Review 

In many areas of economic analysis regularity conditions, derived by economic 

theory, restrict the shape of the mathematical functions used to model technology 

and/or economic behavior. Examples are curvature and monotonicity restrictions 

which apply to indirect utility, expenditure, production, profit, and cost functions. 

During the last thirty years it has become standard to use second-order flexible 

functional forms for empirical analyses, such as the Translog and the Generalized 

Leontief, which have the ability to attain arbitrary local elasticities at one point in the 

regressor space. Recently, higher (than second) order series expansions, such as the 

Fourier and the Asymptotically Ideal Production Model (AIM), have been suggested 

(e.g. Gallant and Golub, 1984; Barnett, Geweke and Wolfe, 1991, Koop, Osiewalski 

and Steel, 1994). These representations promise a better fit to the data as they 

transition from local to global flexibility and as the order of the expansion increases. 

Even more recently nonparametric estimation techniques that account for shape 

restrictions (originally proposed by Hildreths, 1954) have garnered increasing 

attention in the literature (Matzkin, 1994, Tripathi 2000, Aït-Sahalia and Duarte, 

2003). The advantage of such an approach is that no assumption about a parametric 

functional form, or a series expansion thereof, has to be imposed. However, this 

advantage comes at the cost of lower asymptotic convergence rates as well as 
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sometimes unknown asymptotic distributions. Given these potential disadvantages, in 

this paper we focus on the problem of the estimation of parametric functional forms. 

Unfortunately, the estimated parametric functions that model economic behavior 

frequently violate curvature and monotonicity restrictions and the propensity for such 

violations can increase with the order of flexibility. Violations can lead to ambiguous 

forecasts and errant conclusions about economic behavior. Concerns related to the 

imposition of regularity conditions is as old as the literature on flexible functional 

forms and represents ‘one of the most vexing problems applied economists have 

encountered’ Diewert and Wales (1987).  

In this chapter we propose and illustrate a Bayesian estimation procedure for 

imposing regularity conditions via nonlinear inequality constraints. The conditions are 

imposed on a connected3 subset of the domain of the function being estimated. The 

connected subset represents what we refer to as the empirically relevant region, and is 

defined by the model analyst. This regional approach offers important advantages 

over the local approach by imposing theoretical consistency not only locally at a given 

evaluation point, but also over the entire empirically relevant region of the domain 

associated with the function being estimated. The method also provides benefits 

relative to the global approach, through higher flexibility derived from being less 

constraining, which generally leads to a better model fit to the sample data compared 

to the global imposition of regularity. In order to underscore the differences between 

                                                 
3 A connected set is such that any two points in the set can be connected by a continuous curve totally contained in 
the set. Formally: let S be a topological space. X ⊂ S is connected iff we cannot find open sets U, V  ⊂ X such that 
U ∩ V = ∅ and U ∪ V = X. 
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the regional, local and global approach, we begin by discussing how previous 

methods handled the imposition of regularity.  

2.1.1 The global approach 

A widely applied partial solution to the problem of imposing regularity 

conditions is to devise parametric restrictions that impose the curvature conditions 

globally, i.e. at all values of the regressor space (see Diewert and Wales, 1987). For 

most4 flexible functional forms, however, such restrictions come at the cost of limiting 

the flexibility of the functional form with regard to representing other economic 

relationships. For example, under the imposition of global concavity, the Generalized 

Leontief cost function does not allow for complementary relationships among inputs.  

As recently noted by Barnett (2002) and Barnett and Pasupathy (2003), the 

‘monotonicity’ regularity condition has been mostly disregarded in estimation, leading 

to questionable interpretability of the resultant empirical economic models. A 

fundamental difficulty, however, is that imposing both curvature and monotonicity can 

extirpate the property of second order flexibility: For the special case of finite linear-

in-the-parameters functional forms, which is the most common in empirical 

applications, Lau (1986:pp.1552-57) proved that flexibility is incompatible with global 

regularity if both concavity and monotonicity are imposed. Thus, maintaining higher 

order flexibility requires giving up global regularity (although one might maintain 

                                                 
4 An exception is the class of quadratic functional forms, e.g. the Generalized and Symmetric McFadden, on which 
the curvature is easily imposed on the parameters of the Hessian without destroying the flexibility property, as 
shown by Lau 1978 and Diewert and Wales (1987). However, if one wishes to impose curvature and monotonicity 
on functional forms, then the restrictions are functions of the parameters and the regressor variables. A solution to 
this problem is the purpose of this paper. 
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local flexibility), which is a fact that does not seem to be generally appreciated in the 

literature on globally flexible functional forms.5 

2.1.2 The local approach 

The local approach maintains the flexibility property of a functional form if the 

regularity conditions are imposed at one selected point of the regressor space (i.e 

RYAN and WALES, 1998). The risk with this approach is that regularity may be 

violated in a neighborhood of this selected point. Because of this dilemma, the 

literature on flexible functional forms is characterized by a continual investigation for 

new functional forms that produce relatively large regular regions. Nonetheless, for a 

given data set, searching for alternate forms and applying and testing the regularity 

conditions on a case by case basis becomes an arduous task,6 that can also be rife with 

statistical testing/verification problems. In 1984, GALLANT and GOLUB proposed an 

inequality constrained optimization program to impose regularity conditions locally at 

each observed regressor value. Compared with the global approach, this method 

generally increases the fit of the model to the data. However, two problems remain: (a) 

the procedure becomes numerically difficult for large sample sizes and/or complicated 

constraints and (b) it is possible that the estimated form is irregular at points other than 

                                                 
5 For example, a globally consistent second order Translog reduces the feasible parameter values of its squared 
terms to be zero, thus restricting the functional form to its (second order inflexible) first order series expansion, the 
Cobb-Douglas, which has constant elasticities. 
6 Examples of functional forms investigated are the Minflex Laurent (Barnett 1985), Extended Generalized Cobb 
Douglas (Magnus, 1979), Symmetric Generalized McFadden and Symmetric Generalized Barnett (Diewert and 
Wales 1987). Furthermore see the cited literature in Barnett, Geweke and Wolfe (1991:p.10) and more recently 
Terrell (1995, 1996), Ivaldi et al. (1996), Fleissig, Kastens and Terrell (1997, 2000), Jensen (1997), Ryan and 
Wales (1998), Fischer, Fleissig and Serletis (2001) for studies evaluating these mentioned and other competing 
forms. We recommend Barnett, Geweke and Wolfe (1991: pp.3-15) for an extensive and insightful review on the 
various developments, trials and errors in the history of using flexible functional forms.  
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the sample observations. Hence, more general methods of imposing the regularity 

conditions are desirable and those which appear to be the most promising are 

summarized below in section 2.1.3. 

2.1.3 Towards regional regularity 

In order to circumvent the problem of the estimated form being irregular at 

points other than the sample observations, GALLANT and GOLUB discussed the 

possibility of imposing regularity conditions on a predefined regular region ψ of the 

regressor space by outlining a double inequality constrained optimization procedure. 

This regional regularity approach has the advantage that flexibility of the functional 

form can be maintained to a large degree while remaining theoretically consistent in 

the region where inferences will be drawn. In addition, imposing regional regularity 

generally leads to better forecasts than global regularity. However, GALLANT and 

GOLUB did not demonstrate the tractability of this approach and it seems that empirical 

implementation can be formidable with the currently available optimization tools.  

It was not until 1996 that TERRELL advanced ideas relating to the empirical 

application of regional regularity. Instead of explicitly using a constrained 

optimization algorithm he decomposed the problem into a series of steps: First, a 

convex set ψ of the domain of the function is approximated by a dense grid consisting 

of thousands of singular regressor values. Second, using a Bayesian framework, an 

unconstrained posterior distribution of the parameter vector β, conditional on the 

endogenous variable y, pu(β|y), is derived that does not incorporate the regularity 

conditions. Third, a Gibbs sampler is used to draw parameter vector outcomes from 
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pu(β|y), and an Accept-Reject algorithm is applied to assess regularity for each 

outcome at all grid points. Finally, point estimates are derived and inferences are 

drawn based on the set of regular parameter vectors and its truncated posterior 

distribution. This procedure has two problems: (a) Due to the approximation of the 

relevant regressor space by the grid, the possibility that the function is irregular for 

some non-grid points cannot be eliminated. In this sense Terrell does not impose 

regional regularity (on a connected set) but he imposes local regularity at multiple 

singular points. (b) The Gibbs simulator requires sampling from the entire support Θ 

of the unconstrained posterior pu(β|y). However, this can be time consuming if, as is 

often the case in practice, the regular region is only a small subset of Θ (Terrell 1996). 

To overcome the latter problem, Griffiths, O’Donnell and Tan Cruz 

(2000:p.116) suggested using a Metropolis-Hastings Accept-Reject Algorithm 

(subsequently denoted as MHARA). Compared to the Gibbs algorithm, MHARA may 

increase the probability that sampled parameter vectors are regular, and therefore may 

be faster than Gibbs sampling. However, the related literature on MHARA7 did not 

pursue the regional approach further, but rather continued to impose local regularity 

without proving the theoretical consistency on the domain of interest.   

                                                 
7 Literature on applications of MHARA include Koop, Osiewalski and Steel (1994), O’Donnell, Shumway and Ball 
(1999), Griffiths, O’Donnell and Tan Cruz (2000), Griffiths (2003), Chua, Griffiths and O'Donnell (2001), Cuesta 
et al. (2001), Kleit and Terrell (2001), O'Donnell, Rambaldi and Doran (2001) and  O’Donnell and Coelli (2003). 
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2.1.4 Objectives and organization of Chapter 2 

The principal goal of this paper is to improve upon current methods of imposing 

regularity conditions. Improvement is achieved by pursuing the following two 

objectives with regard to estimated functions: 

(I) economic theory is not violated on a connected subset ψ which 

encompasses the empirically relevant region of the regressor space, and  

(II) for a given function, the model fit – as judged by any specified scalar 

measure of fit on the regular parameter space – is optimized.  

We promote the application of regional regularity by combining elements of Terrell’s 

Bayesian approach with the MHARA. This defines an alternative methodology that 

substantially mitigates previous difficulties and inconsistencies in applying the 

regional regularity concept. New features of our proposed method include: 

1. a set of sufficient conditions for which regularity is guaranteed at ‘any’ point in ψ 

(objective I). If these conditions are satisfied, a twofold benefit results:  

i) Imposition of regularity in ψ does not rely on a grid approximation, 

and  

ii) the computational speed of the Accept-Reject algorithm is greatly 

enhanced as only a few critical points need to be checked for 

regularity.  

2. allowing ψ to be some connected non-convex set, which can significantly increase 

the model fit achievable from estimation (objective II). 
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3. demonstrating that the commonly used MHARA sampling technique suffers from 

an upward bias of posterior density values in the neighborhood of the truncation 

boundary. We provide a simple bias-mitigating alternative. 

4. demonstrating that the commonly used posterior mean may be inappropriate as a 

point estimate of model parameters due to the potential violation of regularity 

conditions. As an alternative, we suggest two regularity-preserving point 

estimates:  

i) the posterior mode 

ii)  the parameter vector that minimizes error loss subject to regularity 

constraints.  

       The organization of the chapter is as follows: In section 2, we motivate the 

methodology and outline the estimation procedure in general terms. Section 3 provides 

a more technical description of procedures and discusses the four methodological 

contributions. Examples using AIM functional forms are given in section 4 in order to 

illustrate the methodology and demonstrate empirical relevance. A final section 

presents conclusions and the appendix contains all necessary proofs as well as 

additional details relating to the implementation of the estimation procedure.  

 

2.2 Methodological background 

This section provides a general overview of the regularity conditions to be 

imposed, the Bayesian context of the problem, the Markov Chain Monte Carlo 

(MCMC) algorithm used, and the Accept-Reject algorithm.  
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2.2.1 The cost function example 

For illustrative purposes, consider estimating a system of input demand 

equations imposing a regular region on  the underlying unit cost function, c(p;β), 

whereby p = [p1, p2,…, pK]T ∈ π are K input prices, π denotes the orthant of strictly 

positive prices in ℜK, and β ∈ Θ is the parameter vector to be estimated. According to 

economic theory c(p;β) must be concave and nondecreasing in p (Mas-Colell, 

Whinston and Green, 1995:p.141). The regularity conditions to be imposed on a subset 

ψ of the price space π can be characterized by H elementary Inequality Constraint 

Functions, i(p;β) ≡ [i1,i2,…,iH]: (π × Θ) → ℜH, whereby the restrictions hold 

whenever, for a given β, i() is nonnegative for all prices in the relevant region ψ,
 

    i(p;β) ≥ 0 ∀ p ∈ ψ. 

For example, if c(p;β) is a twice continuously differentiable, linear homogenous in p 

unit cost function with K = 2 input prices, then the inequality constraints could be 

defined as8  

i1 = ∂c(p;β)/∂p1,        i2 = ∂c(p;β)/∂p2, 

i3 = – ∂²c(p;β)/∂p1
2       and       i4 = – ∂²c(p;β)/∂p2

2. 

Note that previous global and local estimation methodologies differ in the way 

ψ is defined. If i(p;β) ≥ 0 ∀ p ∈ ψ, we say that regularity is imposed (i) locally if ψ 

consists of one or more singular disconnected points in π, (ii) globally if ψ = π, and 

                                                 
8 Note that nonnegativity of i1 and i2 imposes monotonicity. Nonnegativity of i´3 and i5 imposes negative semi-
definiteness on the Hessian ∂²f(p;β)/∂p∂p′. Since by linear homogeneity of f(⋅) the Hessian has rank K – 1, it is not 
necessary to generate an additional inequality constraint function to sign the Kth principal minor. 
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(iii) regionally if ψ is some connected subset of π. Given the trade off between 

flexibility, on the one hand, and regularity violations on the other, we follow the idea 

of Gallant and Golub (1984) and consider imposing the conditions regionally. For this 

purpose we now define a particularly relevant ψ.  

Definition 1: The empirically relevant set ψ is a closed9 and connected subset 

of π that covers the empirically relevant price region, defined as containing all 

sample observation n = 1,…,N as well as any price points c = 1,…,C that will 

be used for subsequent analyses and/or simulations based on the estimated 

model. 

In contrast to previous practice, we here require ψ to be a connected set. It rules out 

the possibility that any small irregular region in between two disconnected regular 

regions can destroy overall regularity (see fig. 1). 

Fig 1: Irregular cost function 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
9 The requirement that ψ is a closed set simplifies the proofs of some later propositions, but is not necessary for any 
other reason.  

price 

cost 

ψp ψsim 

Fig. 1 depicts an example where 
ψp includes all observed data 
points (each dot represents an 
observed (cost, price) 
combination used for estimating 
the cost function), and ψsim 
includes the region at which 
inferences will be drawn for 
simulation purposes. However, 
ψ = ψp ∪ ψsim violates the 
requirement that it is one 
connected set. The graph shows 
that imposing concavity and 
monotonicity at both regions ψp 
and ψsim does not necessarily 
generate overall regularity and 
can lead to spurious forecasts 
because costs must not decline 
with rising input prices. 
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2.2.2 Statistical model and Bayesian context 

Although the methodology is applicable in other contexts, here we follow the 

example of the previous section and hence, describe the setting as an estimation of a 

system of M equations  

     y = f(P;β) + ε .      (1) 

(1) is the empirical specification of the statistical model of interest, whereby y is an 

M⋅N × 1 vector of N observations on M endogenous variables, which represent 

transformations of N × K observed prices P, and β ∈ Θ is an L × 1 unknown parameter 

vector.10 We assume that ε is an M⋅N × 1 unknown error vector with mean E[ε] = 0 

and covariance matrix Σ. Further, Θ is the L-dimensional parameter space, which, if 

the regularity conditions are to hold for all values of p in ψ, reduces to the L-

dimensional regular subset ΘR ⊂ Θ  defined as11  

          ΘR|ψ = {β: i(p;β) ≥ 0 ∀ p ∈ ψ}.                 (2) 

The marginal posterior distribution for β is derived by applying Bayes rule  

         p(β|y,ψ) ∝ ∫L(β,Σ|y)⋅p(β,Σ|ψ)dΣ                                       (3) 

where L(β,Σ|y) is the likelihood function summarizing the sample information, 

p(β,Σ|ψ) is the joint prior distribution on the parameters, given ψ, and p(β|y,ψ) is the 

conditional posterior. Assuming the standard ignorance prior on the covariance matrix, 

                                                 
10 Note that the matrix denoted by the capital letter P represents n observations on the lower case price vector p = 
[p1, p2,…, pK]T. 
11 We use the superscript ‘R’ for a ‘regular’ set, and ‘IR’ for an ‘irregular’ set. E.g. for the irregular parameter space 
we write ΘIR. Note that generally for any given connected or disconnected set ψ*, Θ consists of two disjoint 
subsets, such that ΘIR|ψ* ∪ ΘR|ψ* = Θ. 
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p(Σ) = |Σ|-(M+1)/2, and further assuming that β and Σ are a priori independent, the joint 

prior is defined as  

                                                          p(β,Σ|ψ) = p(β|ψ)⋅|Σ|-(M+1)/2.                               (4) 

         In the remainder of the paper we do not impose any additional information in our 

prior other than that needed to account for the economic theory constraints imposed on 

ψ. Recognizing that the definition of the regular parameter set ΘR|ψ is dependent on 

the choice of ψ, the marginal conditional improper12 prior on the β vector is specified 

as an indicator function  

                                                                  p(β|ψ) = 1{β∈ΘR|ψ}                 (5) 

where the prior equals 1 if regularity holds at the value β ∀ p ∈ ψ, and equals 0 

otherwise.  

The notation used in (1)-(5) highlights the conditionality upon ψ because it not 

only determines the applicable domain for f(p;β) but also determines the shape of 

ΘR|ψ and therefore the potential fit of the economic model to the data. In the 

remainder of the paper p(β|y,ψ) denotes the regularity posterior containing all of the 

information about the parameters that can be extracted from a) economic theory, b) 

data and c) the chosen model, y = f(P;β) + ε, as applicable to a given empirically 

relevant region ψ of input price space.  

                                                 
12 Note that typically a prior distribution is a function of the parameters only and has the entire parameter space as 
its domain. In our case however p(β|ψ) also includes information about the price space as part of its specification. 
Also, 1{β∈ΘR|ψ} is technically not a “proper” prior distribution. It is not normalized to integrate to 1, and 
moreover, if ΘR|ψ does not have finite volume, ∫p(β|ψ)dβ = ∞. However our prior effectively indicates the set 
membership of β, i.e., if it is regular or not, and it is an uninformative prior on ΘR|ψ.  
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2.2.3 Markov Chain Monte Carlo and Accept-Reject algorithm  

          We now turn towards the simulation technique used to generate outcomes from 

the regularity posterior p(β|y,ψ), which are then used to obtain point estimates and to 

draw posterior inferences. One possible method is to approximate posterior 

expectations numerically by applying a Markov Chain Monte Carlo technique. For 

example, a Metropolis-Hastings algorithm can be used to generate J (pseudo-) random 

outcomes, b(j), j = 1,…,J from p(β|y,ψ) on the support ΘR. The outcomes are then used 

to approximate posterior expectations via the appropriate empirical estimates, e.g.  

J-1∑ =

J

j 1
(j))g(b  for approximating E[g(β)]. The estimates converge to the true expectations 

as J increases.13 

          To account for the regularity prior p(β|ψ), the simulator should ensure that any 

drawn parameter vector b(j) implies regularity of f(p;β) for every point p in the 

predefined set ψ, i.e. b(j) ∈ ΘR|ψ ∀ j. Since theoretically there are an infinite number 

of points in ψ, they cannot all be checked explicitly. In general the connectedness can 

be approximated by a fine grid denoted by the disconnected set ψg ⊂ ψ which consists 

of possibly Q ≈ tens-of-thousands of equidistant distinct points.14 Within the MCMC 

an Accept-Reject algorithm is then implemented to guarantee that ∀ b(j) the regularity 

conditions hold for any single of the Q grid point, i.e. that b(j) ∈ ΘR|ψg ∀ j, whereby 

ΘR|ψg is the approximated regularity posterior support, which will tend towards the 

                                                 
13 See literature cited in footnote 15 for useful introductions into MCMC methods.  
14 I.e. in the case of a hyperrectangle ψg is defined as a) selecting Q equidistant values between the vertices of ψ, 

min
kp  and max

kp  as q
kp  = min

kp  + (q-1)Q-1( max
kp  –  min

kp ) ∀ q ∈ {1,…, Q} and using all possible Q⋅K combinations of prices to 

generate ψg. 
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actual set ΘR|ψ the finer the approximation grid ψg. In order to circumvent the 

approximate nature of this representation, in a later subsection we identify problem 

conditions under which checking certain key points in ψ will guarantee overall 

regularity ∀ p ∈ ψ.  
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2.3 Regionally regular estimation procedure 

This section describes our proposed method for estimating f(p;β) subject to the 

nonlinear inequality constraints i(p;β) ≥ 0 ∀ p ∈ ψ. To start we provide a complete 

stepwise description in box 1. The procedure consists of three parts: pre-analysis of 

the problem (step 1 to step 4), application of the MHARA (step 5 to step 11) and 

inferences based on the regularity posterior (step 12). In the subsections to follow, we 

explain the objectives of the steps that are nonstandard15 and develop necessary 

technical details.  

2.3.1 Pre-Analysis: selection of regular region and approximation grid 

The pre-analysis provides necessary information for the subsequent application 

of the MHARA especially the definition of the prior distribution p(β,ψ) = 1{β∈ΘR|ψ}: 

The regularity conditions (defined by economic theory) are identified (step 2), the 

empirical relevant region ψ is chosen by the researcher (step 3) and subsequently 

approximated by a grid ψg (step 4). 

                                                 
15 Step 1, Step 5, Step 10 and Step 11 are not further elaborated on because their content is either obvious from the 
explanation given in box 1, or they are part of the conventional Metropolis-Hastings algorithm, which we assume 
the reader to be familiar with. In order to keep it is as uncomplicated as possible we outline the simplest way of 
implementing the Markov Chain. Other procedures like multiple chains and other proposal distributions are 
suggested in the literature. The reader is referred to Chib and Greenberg (1996), Richarson and Spiegelhalter 
(1996), Robert and Casella (1999) or Chen, Shao and Ibrahim (2000) for a further discussion of appropriate 
modifications of the Metropolis-Hastings algorithm. 
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Box 1: The 12-step procedure: 
pre-Analyses (1)-(4), MAHRA (5)-(11), inference (12) 
Step 1 Estimate y = f(P;β) + ε without imposing inequality constraints to obtain the 

unconstrained estimate bu of β as well as the estimated L × L covariance matrix 
cov(bu). 

Step 2 Define i() that characterizes the regularity conditions for the function being estimated. 

Step 3 Define ψ according to definition 1. If the proposed region is not convex, define a 
sequence of I convex subsets ψi such that ψ = 1

I
ii=

ψ∪ .  

Step 4 Selection of evaluation points: For the hth function ih(p;β): analyze which properties I to 
property V hold ∀ (p,β) ∈ (ψ × Θ) and define ψgh according to table 1. Repeat step 4 ∀ 
h. 

Step 5 Initialize the Markov Chain with a regular parameter vector: If bu ∈ ΘR, set b(0) = bu 
else b(0) = 0. Set j = 0. 

Step 6 Generate a candidate b(*) by the proposal distribution δ⋅p(b(*);b(j)), whereby δ is to be 
set so that approximately 25%-50% of the regular draws b(*) become accepted in step 
10. 

Step 7 If b(*) is irregular at the vertices of ψ, go to step 6. 

Step 8 Repeat step 4, but instead of evaluating i() conditional on (p,β) ∈ (ψ × Θ), evaluate i() 
∀ (p,b(*)) ∈ (ψ × b(*)), i.e. conditional on the very last draw b(*). 

Step 9 If b(*) is regular in ψg, calculate r = p(b(*)|y,ψ)/p(b(j)|y,ψ), else go to step 6. 

Step 10 if r > 1, b(j+1) = b(*) else  
 if Uniform(0,1) ≤ r, b(j+1) = b(*), else b(j+1) = b(j). 

Step 11 Increment j by j = j+1. Go to step 6, until j = J+S, whereby S
j

j
1

)( }{ =b  are the burn-in draws 

to be discarded after the final loop such that SJ
Sj

j +
+= 1

)( }{b  are the outcomes to be 

considered for constructing p(β|y,ψ). 

Step 12 Analyze p(β|y,ψ), i.e. calculate point estimates and perform inferences.  
The dotted arrows indicate backward jumps in the algorithm which are conditional on the fact that the 
last drawn parameter vector b(*) is irregular. The number of times these jumps occur is unknown prior to 
the estimation. In contrast, the loop indicated with the solid arrow is proceeded J+S times.  

Step 2: The regularity conditions of f(⋅) are to be translated into H inequality 

constraint functions [i1,i2…,iH] such that economic theory holds whenever i(p;β) ≥ 0. 

An illustrative example for the case of monotonicity and curvature restrictions was 

given in section 2.2.1.  
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Step 3: In contrast to defining ψ as one convex hyperrectangle (as in Gallant and 

Golub, 1984 and Terrell 1996), we define ψ as any connected (possibly non-convex) 

set. This has potential advantageous. First consider the following adaptation of a well-

known result from optimization theory:  

Lemma 1: Let ψ* be any subset of the regressor space π and let s: ΘR|ψ* → ℜ1 

be any scalar function.   

If ψ1* ⊂ ψ2*, then R R
*1 *2

max ( ) max ( )s s
∈ ∈

≥
β Θ ψ β Θ ψ

β β . 

Suppose s(β) is any scalar goodness of fit measure maximized when estimating the 

model. The lemma then states that the fit of a model  regular in ψ1* is at least as good 

as the fit when imposing regularity in ψ2*, given that ψ1* ⊂ ψ2*. This suggests that 

within the context of definition 1 (see section 2) ψ should be defined as small as 

possible. This often results in a non-convex set ψ to which the methodology can be 

equally applied by decomposing ψ into I convex subsets ψi ∀ i = 1,…,I, such that ψ = 

1

I
ii=

ψ∪ .16 In many cases it turns out practical to construct ψ as I = N+C line segments 

connecting all empirically relevant points thereby promising an increased fit of the 

estimated model to the data. For details, see the application in section 4.  

Whereas step 3 focused on the selection of ψ, the next issue concerns the 

construction of the evaluation grid ψg, which is conditional on a given set ψ.  

                                                 
16 Subsequently, in order to save notation, the subindex i is omitted. Since some nonconvex supersets cannot be 
decomposed into a finite union of convex subsets, the requirement to define each subset ψi to be convexly shaped 
limits the generality of the construction of possible regular regions. However, such nonconvex sets can be 
arbitrarily well approximated for large I. For applied work we propose nonconvex sets which circumvent this 
problem, see the “string approach” in section 4.2.  
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Step 4: As outlined in section 2.3, ψ is approximated by ψg and regularity is 

explicitly checked for a high number, Q, of grid points. It remains uncertain, however, 

if the selected Q-grid is dense enough to avoid irregularity that may occur in between 

grid points.  

The purpose of step 4 is to identify conditions under which it will be 

guaranteed that if certain key areas or singular points in ψ are regular, then other areas 

of interest are regular as well. This allows for a reduction of regularity checks to a 

number Q*< Q that  

         a) improve the computational speed of the algorithm and  

         b) maintain the accuracy of the approximation obtained from the original Q-grid.  

In order to identify those cases the following properties relating to f(p;β), ψ, and ih are 

exploited: 

Property I: ih has property I, iff each of the K derivatives, ∂ih/∂pk, is continuous and 

either ≤ 0 ∀ p ∈ ψ or ≥ 0 ∀ p ∈ ψ. The signs may however be different across the K 

derivatives. 

Property II: ψ is a closed and connected hyperrectangle constructed such that each of 

its sides is parallel to one of the K price-axes. 

Property III: ih has property III, iff the derivative with respect to at least one price 

(say the mth price) is continuous and either ∂ih/∂pm ≥ 0 ∀ p ∈ ψ or ∂ih/∂pm ≤ 0 ∀ p ∈ 

ψ.  

Property IV: ih is quasiconcave in p and ψ is convex. 

Property V: f(p;β) is twice continuously differentiable and homogenous in p. 
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Table 1 summarizes six cases for constructing sufficient “evaluation sets” ψh, 

h=1,…H. In particular, the cases 2 and 5 are of interest since these enhance the 

computational speed considerably by reducing the number Q* of necessary grid points 

to be checked. These evaluation points are described in the following definitions: 

(1) The K × 1 price vector zh is one vertex of the hyperrectangle ψ (Q*=1).17  

(2) Zh = [z1, z2,…, 
2Kz ]h is a K × 2K matrix of all vertices of the hyperrectangle ψ 

(Q*=2K). 

Table 1: Sufficient conditions for defining the evaluation set as a subsets of ψ  
Case Property 

I 
Property 

II 
Property 

III 
Property 

IV 
Property 

V ψh  Support generated 
by the hth grid Proposition

1 +     boundary 
Bh 

 ΘR|Bgh  ⊃ ΘR|ψ  1a 

2 + +    one vertex 
zh 

 ΘR|zh  = ΘR|ψ  1b 

3   +   boundary 
Bh 

 ΘR|Bgh  ⊃ ΘR|ψ  2a 

4  + +   side  
Sh 

 ΘR|Sgh  ⊃ ΘR|ψ  2b 

5  +  +  all vertices 
Zh 

 ΘR|Zh  = ΘR|ψ   3  

6     + shield  
S*  

 ΘR|S*  ⊃ ΘR|ψ  4 

Symbol ψh is a placeholder for Bh, Sh, S*, zh, and Zh. The subindex h indicates that each inequality constraint 
function ih requires its own ψh, all of which are proper subsets of ψ. Considering the above five set definitions of 
ψh, the six cases in table 1 read row-wise as follows:  
For cases 1 – 5: Suppose for the hth elementary inequality constraint function ih the properties (designated by +) 
hold: ih ≥ 0 ∀ p ∈ ψ iff ih ≥ 0 ∀ p ∈ ψh (whereby ψh takes the form as indicated in the column ‘ψh’). 
For case 6: Suppose property V holds. Then for all inequality constraint functions i*(⋅) that impose nonnegative 
slope, nonpositive slope, concavity and/or convexity: i*(⋅) ≥ 0 ∀ p ∈ ψ iff i*(⋅) ≥ 0 ∀ p ∈ S*. 
For the proofs of these statements see section A1 of the appendix. 

These small evaluation sets not only enormously increase the computational 

speed, but are of interest from a theoretical perspective as well, that is expressed in the 

following proposition: 

                                                 
17 Given the proof of proposition 1b in the appendix, which vertex out of the 2K vertices must be explicitly checked 
(for the sign of ih) depends on the signs of the derivatives: If ∂ih/∂pk ≤ 0 ∀ p ∈ ψ, then the kth element of z is max

kp  and 

if ∂ih/∂pk ≥ 0 ∀ p ∈ ψ, then the kth element of z is min
kp . 
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Proposition 5: If for all b(j) case 2 or case 5 hold ∀ h, then ∀ p ∈ ψ f(p;b(j)) is 

regular.  

Hence in these two cases f () becomes strictly regular, instead of regular in 

approximation only as Q→ ∞.18 Depending on which properties I-V hold, the set ψh 

can take 3 further forms of interest:  

(3) Bh
 = bd(ψ) denotes the boundary of ψ.  

(4) Sh ⊂ B is one side of the hyperrectangle. Considering the proof of proposition 1b 

and corollary 2b in the appendix it follows that Sh is orthogonal to the mth price-axis. 

Further details on the construction of the grid Sgh are given in the appendix.  

(5) S* ⊂ B is a set that can be viewed as a “shield” bounding ψ from below, i.e. from 

the perspective of rays emanating from the origin 0 ∈ π (see the illustrations in Fig. 2). 

In order to define S*, let l(0,y) be a straight line through the origin 0 and through y ∈ 

π, then S* = {p ∈ bd(ψ): ∀ ϕ if ϕ ∈ bd(ψ)∩l(0,p), then ||p|| ≤ ||ϕ||}.  

Fig. 2: Illustrations of evaluation grids for the Accept-Reject algorithm  

 

To the left, an example of a shield S* ⊂ ψ is displayed. To the right the shield grid Sg* ⊂ ψ = {p: p ∈ 
3

1=×k [.5, 1.5]} which we also use for the second principal minor test for the AIM(2) in section 4.  

                                                 
18 If Q → ∞, i.e. the number of equidistant grid points of ψg goes to infinity, and i(·) is continuously differentiable, 
then any parameter value b ∈ ΘR|ψg is such that f(p;b) is almost everywhere in ψ regularity-retaining. 
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Two final remarks are in order: The first five cases in table 1 are independent 

of the “type of regularity conditions” to be imposed. Case 6, instead, is less general 

but applies when imposing monotonocity and curvature, (and thus suits the cost-

function example in section 2 and 4). Then the shield S* has to be evaluated only. 

Secondly, in practice all infinite ψh must be approximated by an hth evaluation grid 

ψgh. For example, the boundary evaluation set Bh = bd(ψ) is approximated by an 

evaluation grid Bgh ⊂ B, and Sh and *
hS  are approximated by Sgh and *

ghS  respectively. 

Conversely zh and Zh are finite evaluation sets (that do not require the approximation 

subindex ‘g’).  

2.3.2 The Metropolis-Hastings Accept-Reject algorithm and posterior bias 

Steps 6 to 11 of the procedure apply the MHARA, which provides J random 

draws from the regularity posterior p(β|y,ψ). We elaborate on some of these steps 

below. 

 Step 6: b(*), a candidate for the jth+1 vector in the MCMC sequence SJ
j

j +
=1

)( }{b , is 

generated by a symmetric proposal distribution δ·p(b(*);b(j)).19 One possibility for 

drawing outcomes from p(b(*);b(j)) that accounts for linear equality constraints on 

parameters (e.g. for the symmetry condition on the Hessian ∂²f(p;β)/∂p∂p′) is to use 

the multivariate normal distribution N(b(j),cov(bu)) to generate the L × 1 vector b(**), 

and then to calculate  

                                                 
19 The term proposal distribution stems from the fact that δ·p(b(*);b(j)) proposes a new candidate b(*) for the next 
state b(j+1). Generally the proposal distribution is defined to be symmetric around the previous accepted point b(j), in 
which case the tuning parameter δ is to be set that between 25%-50% of the regular draws b(*) are accepted in step 
10. The optimal acceptance rate depends on the number of parameters estimated, see Robert and Casella (pp.281-
283: 2002) for a recent discussion.  
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b(*) = b(**) – cov(bu)⋅RT⋅(R⋅cov(bu)⋅RT)-1⋅(R⋅b(**) – r), 

whereby R is a V × L design matrix and r is a V × 1 vector chosen appropriately to 

impose V linear equality restrictions on b(*).  

 Step 7 and 9: Step 7 is inserted to save computing time associated with step 8 

for vectors b(*) that are already irregular at the vertices of ψ. If b(*) is identified to be 

irregular (either after step 7 or 9), b(*) must be discarded and a new b(*) drawn in step 

6 (see the dotted arrows in box 1) using the last regular draw b(j) as the mean of the 

symmetric proposal distribution δ·p(b(*),b(j)). This is repeated until b(*) ∈ ΘR|ψg. The 

‘discarding’ is necessary to avoid an upward bias of the regularity posterior density 

values in the neighborhood of the truncation boundary.20 

 To our knowledge in all previously published descriptions of the MHARA21 

it was common to repeatedly include the last regular b(j) as an outcome of the 

simulated regularity posterior as b(j+1) = b(j) until b(*) ∈ ΘR|ψ. This practice, however, 

distorts the simulated regularity posterior in the peripheral region of ΘR|ψ close to the 

truncation boundary to ΘIR|ψ. This is due to the fact that the probability of drawing an 

irregular b(*) is higher, the closer the last regular draw b(j) is to the frontier of ΘIR|ψ.22  

                                                 
20 Since the bias arises independently if sampling from ΘR|ψ or from ΘR|ψg, we will drop the subindex ‘g’ for the 
explanation. 
21 Among others, the studies of O’Donnell, Shumway and Ball (1999), Griffiths, O'Donnell and Tan Cruz (2000), 
Griffiths (2003), Chua, Griffiths and O'Donnell (2001), and Cuesta et al. (2001), O'Donnell, Rambaldi and Doran 
(2001) did not account for this bias.  
22 Denote the relevant peripheral region close to or on the boundary ΘIR|ψ as Θb|ψ and denote the simulated 
posterior as p̂ . Then the bias arises of the form p̂ (βb|y,ψ, without ‘discarding’) > p(βb|y,ψ) for βb ∈ Θb|ψ. A 

numerical example illustrating the bias by comparing the previous to the above simulation technique can be found 
in Wolff, Heckelei and Mittelhammer (2003). 
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 To complete step 9, if the drawn parameter vector b(*) is regular ∀ p ∈ ψg, 

calculate23  

                                                    r = p(b(*)|y,ψ)/p(b(j) |y,ψ).                 (6) 

Finally note that step 7 and the ‘else condition’ of step 9 (see the dotted arrows in box 

1) approximate the behavior of the indicator function 1{β∈ΘR|ψ} by subtracting 

ΘIR|ψg (instead of ΘIR|ψ) from Θ.  

Step 8: The same procedure applies as in step 4, with the modification that f(⋅) and 

i(⋅) are evaluated conditionally on the drawn parameter vector b(*). To save computing 

time, if in step 4 in some hth evaluation ψgh = Zh or ψgh = zh, the hth evaluation of step 

8 can, of course, be skipped.  

2.3.3 Point estimates: inconsistency of the mean and two alternatives 

Step 12: Steps 1 to 11 generated J outcomes of p(β|y,ψg), which can now be 

used to derive point estimates and to draw posterior inferences. Finite sample 

inferences such as posterior moments and highest posterior density regions can be 

directly computed using well-known Monte Carlo techniques.  

As far as we are aware, all previous studies applying MCMC and Importance 

sampling to impose regularity conditions define the point estimate of β as the mean 

                                                 
23 E.g. in the case of a normal SUR model (6) becomes [|(N-L)Σ(*)|/|(N-L)Σ(j)|]-N/2 which can be derived from the 
definition of the unconstrained posterior pu(β|y) ∝ ∫L(β,Σ|y)|Σ|-(M+1)/2dΣ and the fact that it is directly proportional 
to p(β|y,ψ) by p(β|y,ψ) ∝ |(N-L)Σ|N/2, (Zellner, 1971:p.243). Cancelling out the normalizing constants and factoring 
out the exponents -N/2 yields [|(N-L)Σ(*)|/|(N-L)Σ(j)|]-N/2. 
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E[β] of the regularity posterior.24 However, this may result in regularity violations, as 

indicated in the following proposition.  

Proposition 6: Let p(β|y,ψ) be the regularity posterior with parameter support 

ΘR|ψ. If an inequality constraint is a nonlinear function of β, then E[β] = 

∫β⋅p(β|y,ψ)dβ can reside in either ΘR|ψ or ΘIR|ψ, and thus f(p;E[β]) can lose the 

property of being regular for some p ∈ ψ. 

We propose two alternative estimators that, in addition to imposing regularity 

(objective I), maximize a model fit measure s(β) on ΘR|ψg, as indicated by Lemma 1 

(objective II). Our first suggestion for an estimator is best motivated under the 

assumption of Gaussian noise. The second is motivated independently of the noise 

probability distribution.  

          Under the assumption of a normal error distribution, we suggest selecting the 

mode  

β(mode)  = { }
R

g

garg max ( | , )p
∈β Θ ψ

β y ψ  

of the regularity posterior as the point estimate to maximize model fit subject to the 

regularity conditions. To motivate β(mode), note that the information contained in the 

normal unrestricted posterior pu(β|y) ∝ |(N-L)Σ|-N/2 (see Zellner 1971:p.243) is strictly 

monotonically related to the generalized variance of the fit |Σ|-1, which can be used as 

a goodness of fit indicator. In fact, Barnett (1976) proved that the minimization of |Σ| 

                                                 
24 These include Barnett, Geweke and Wolfe (1991), Koop, Osiewalski and Steel (1994, 1997), Terrell (1996), 
Terrell and Dashti (1997), O’Donnell, Shumway and Ball (1999), Griffiths, O'Donnell and Tan Cruz (2000), Chua, 
Griffiths and O'Donnell (2001), Kleit and Terrell (2001), Cuesta et al. (2001), Adkins, Rickman and Hameed 
(2002), O'Donnell, Rambaldi and Doran (2001) and O'Donnell and Coelli (2003). 
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is equivalent to Maximum Likelihood (ML) estimation in the case of the nonlinear 

normal classical SUR model. Since (N-L) and the exponent -N/2 are fixed constants, 

the minimization of |Σ| over β ∈ Θ produces the exact same result as the maximization 

of pu(β|y) over β ∈ Θ. So long as no other prior than the regularity prior is applied, we 

have that p(β|y,ψ) ∝ pu(β|y)⋅1{β∈ΘR|ψ} ∝ |(N-L)Σ|-N/2 for β ∈ ΘR|ψ. Thus the normal 

classical inequality-constrained-ML estimator generates a point estimate that is 

numerically equivalent to the mode of p(β|y,ψ). In order to approximate the solution 

based upon the MCMC outcomes ( )
1{ }j J S

j S
+
= +b , one can simply compare the values pu(b(j)|y) 

∀ j resulting from the MHARA as 

b(mode) = { }/ 2( )

( )b

| ( ) |argmax N j

j
N L −− Σ . 

          An alternative estimator, which is not tied to Gaussian errors, can be based on a 

loss function (LF) criteria over ΘR|ψg. The estimator would be defined by solving  

{ }R
g* R

g

(LF ) *
g|

|
arg min || || ( | , )dpϕ

ϕ∈
∈

= −∫ β Θ ψ
β Θ ψ

β β β β y ψ β  

which minimizes the posterior weighted deviation over β ∈ ΘR, where ||⋅||ϕ is some 

vector norm25 measuring the distance between two points within ΘR. For example, 

with ||⋅||2, the standard Euclidean norm, 2

( )

(LF ) 1 ( ) ( ) ( ) ( )
1

arg min ( ) ( )
j

J j i j i
i

J −
=

′= − −∑
b

b b b b b , 

minimizing the empirical-MCMC analogue to the expected squared LF subject to the 

regularity constraints.  

                                                 
25 Given an N-dimensional x a general vector norm ||x||ϕ, for ϕ = 1,2,… is a nonnegative defined as ||x||ϕ = 
[ N

n 1=Σ |x|ϕ]1/ϕ. The special case ||x||∞ is defined as ||x||∞ = max|xn|. The most commonly encountered vector norm is the 
Euclidian norm, given by ||x||2 = [ N

n 1=Σ x2]1/2.  
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We reemphasize that if cases 2 or 5 of table 1 apply ∀ h, then (LF )ϕb  and 

b(mode) are members of the regular set ΘR|ψ and hence both estimators are regularity-

preserving (proposition 5). Conversely, if cases 2 and 5 do not hold, then without 

further knowledge one cannot exclude that the estimates belong to the irregular set 

ΘIR|ψ, see footnote 18.  

          The proposed methodology is general enough to be adopted in both the 

Bayesian and the Classical framework. In the Classical framework one could 

maximize a likelihood function subject to (non-)linear inequality constraints i() and 

the point estimate is the mode of the MCMC-simulated likelihood, which generally 

will be identical to the mode, β(mode), of the regularity posterior. The suggested LF 

criterion, leading to (LF )ϕβ , is typically motivated from the Bayesian perspective and 

has no direct Classical analogue.  
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2.4 Numerical Examples 

This section illustrates the proposed methodology by estimating a cost function 

subject to regularity conditions. For comparison purposes we re-estimate and extend 

some of the simulation experiments provided in the work of Terrell (1995).26 In the 

first subsection local, global and regional regularity approaches are compared based 

on a specified convex set ψ□. The purpose of the second subsection is to demonstrate 

the effects of shrinking the size of ψ.  

2.4.1 Experiment I - convex cube ψ 

2.4.1.1 Data Generation 

We now briefly describe the design of the simulations.27 The true data 

generation process is formulated by the well-known CES cost function   

fCES(p;αk,ρ) = [ 3
1=Σ k ak

1/(1-ρ)⋅pk
-ρ/(1-ρ)](1-ρ)/-ρ.  

As in Terrell, no stochastic error term is added. The derivatives result, by Shephard’s 

Lemma, in K = 3 input demand functions,  

   xk = ∂fCES/∂pk = [αk⋅fCES/pk]1/(1-ρ)                  (7) 

Following Terrell, the data set for the first experiment (table 2) contains N = 64 

observations, consisting of all combinations of the values 0.5, 0.8333, 1.1666 and 1.5 

generated by K = 3 input prices. By (7) this produces 64⋅3 true input demand levels, 

where xk is 64 × 1 with k = 1, 2, 3. 

                                                 
26 The model is kept rather basic which simplifies notation and interpretation of the results related the imposition of 
the regularity conditions. However, generalizations are straightforward, e.g., output, as another explanatory 
variable, could be added while simultaneously imposing that f is convex and monotone increasing in output, as it is 
required by economic theory, in addition to the restrictions which are imposed with respect to p.  
27 For further details about the simulation set-up, the reader is referred to Terrell (1995). 
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2.4.1.2 Estimation and Evaluation 

The purpose of the first experiment is to assess potential advantages of the 

regional approach compared to the local and global approach both in terms of model 

fit and the propensity for regularity violations. The normal SUR system of K = 3 input 

demand functions, kx̂ = kk p∂∂ /)ˆ;()( βPf AIMτ + ûk is estimated, whereby ûk = kx̂ – xk represents 

the 64 × 1 approximation error vector to the ‘true’ data generation process (7), L < N 28 

and kx̂ is the estimated kth 64 × 1 input demand vector derived from the 

Asymptotically Ideal Production Model, AIM(τ), with  

fAIM(1) = 3
1=Σ k βkpk + β4p1

1/2p2
1/2 + β5p1

1/2p3
1/2β6 + β6p2

1/2p3
1/2 

fAIM(2) = 3
1=Σ k βkpk + β4p1

3/4p2
1/4

 + β5p1
3/4p3

1/4 + β6p1
1/2p2

1/2 + β7p1
1/2p2

1/4p3
1/4 +  

β8p1
1/2p3

1/2 + β9p1
1/4p2

3/4 + β10p1
1/4p2

1/2p3
1/4 + β11p1

1/4p2
1/4p3

1/2
 + 

β12p1
1/4p3

3/4
 + β13p2

3/4p3
1/4

 + β14p2
1/2p3

1/2 + β15p2
1/4p3

3/4, 

which are homogenous of degree one, constant returns to scale unit cost functions.29 

As in Terrell (1995), the performance of the AIM(τ) is evaluated over the cubic 

region ψ□ = {p: p ∈ 3
1=×k [.5, 1.5]} by defining a grid ψ□

g ⊂ ψ□ of 20 equidistant prices 

for each input. Thus in total ψ□
g consists of Q = 20⋅20⋅20 = 8000 points, q = 1,….,Q. 

                                                 
28 This requirement is due to an important recent proof by Griffiths, Skeels and Chotikapanich (2002), ensuring a 
bounded solution for the unconstrained maximum likelihood function. They remark that heretofore most authors 
incorrectly assumed that N > M and N ≥ max{Lm} is sufficient, with Lm being the number of parameters of the mth 
equation, m = 1,…,M.  
29 A functional form is second order flexible, if it is capable of being locally equivalent to the true function in level, 
gradient, and Hessian at one given point in the price domain π. This is the case for the AIM(1), which is equivalent 
to the well known Generalized Leontief. Through series expansions the order of flexibility can be increased to 
locally coincide with the true function at higher than second order derivatives. The AIM(2) maintains the flexibility 
order three. Asymptotically, τ → ∞, these forms converge globally to the true function. For a further discussion and 
definitions about second order flexibility see e.g. Barnett (1983). For the concept and applications of globally 
flexible functional forms, see e.g. Gallant and Golub (1984), Terrell (1995) or Barnett, Geweke and Wolfe (1991). 
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This grid is used to compute (a) the maximum approximation error, MAEk = 

ˆarg max{ },
ˆ ˆsgn{ } max{ }

qk
q

qku k q
u u⋅ , and (b) the average absolute approximation error, AAAEk = 

Q-1
1

ˆ| |Q
qkq

u
=∑ , over all Q points, where ûqk = ˆqkx – xqk is the difference between the 

predicted input demand, estimated by the AIM(τ), and the (true) CES input demand of 

equation (7). Then pursuing our objective II of optimizing the model fit MAE and 

AAAE values close to zero are preferred.  

2.4.1.3 Results 

The model fit measures, as well as the percentages of regularity violations of 

the grid points for the local, global and regional approach are displayed in table 2. In 

the first two columns we repeat Terrell’s (table 1 and 2, pp.9-10:1995) simulation 

experiment, and the last two columns apply the method described in section 4.  

Fig. 3: Violations on the price grid ψ□
g in the case of the local regularity approach  

 
In 19.09% of the grid points monotonicity is violated (left cube) and in 3.11% concavity is violated (right 
cube). Each black dot is one grid point where violation occurs.  

First the demand system is estimated subject to local concavity and 

monotonicity constraints guaranteeing regularity for the underlying AIM(τ) cost 

function at pM = [1,1,1], i.e. at the mean of ψ□. Compared to the other columns, the 

local approach provides the best model fit statistics but violates the regularity 
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conditions in the neighbourhood of pM (leading to regularity violations of about 20% 

of the grid points), which is illustrated in fig. 3. It is particularly instructive to note that 

the monotonicity violations are substantially more frequent than the concavity 

violations, which is disconcerting given that Terrell, and in fact most researchers in 

similar previous studies, did not check for monotonicity violations (see Barnett, 2002).  

Table 2: Global, regional and local approach - comparison based on AIM cost 
functions(1) 

Estimation Approach 
Regional Regularity Model 

Forecast Error and 
Regularity Violations 
evaluated over ψ□

g 
Local 

Regularity(2)  
Global 

Regularity(2) Mean Mode 

 AAAE 0.05208 0.14395 0.095523 0.093291 

MAE -0.19692 0.469 0.29045  0.28540 

Concavity Violations 0% 0% 0% 0% 
AIM(1) 

Monotonicity Violations 17.33% 0% 0% 0% 

AAAE 0.02056 0.13266 0.040248 0.036739 

MAE -0.07563 0.40808 0.11591 0.10759 

Concavity Violations 3.11% 0% 0% 0% 
AIM(2)  

Monotonicity Violations 19.09% 0% 0% 0% 

(1) Experiment based on table 1 and table 2 of Terrell (1995): True data generation process: CES 
technology with parameter settings ai = 1; ρ = 0.75. In order to provide a benchmark for the average and 
largest error, the CES-input demand data xk have, as in Terrell (1995), mean of 8000-1 8000

1=Σ g xgk = 0.2552 
∀ k and standard deviation of std(xk) = 0.2230 ∀ k over the evaluation grid ψ□

g. 
(2) Some considerable differences exist between our and Terrell’s (1995) results. (a) Local Regularity 
AIM(2): Instead of 3.11% Terrell found 1.6% of concavity violations. (b) He calculated error statistics in 
the column ‘global approach’ which are about 3-4 times higher for the AAAE and 1.5 times higher for the 
MAE than our results: AIM(1): AAAE = 0.64146, MAE = -0.84186; AIM(2): AAAE = 0.47073, MAE = -
0.63968. After careful consideration, we believe that the results in our table are the correct ones. 

In the column ‘global regularity’ economic theory holds globally on π through 

the imposition of nonnegativity constraints on all the AIM parameters β (as in Terrell, 

1995) which confirms numerically the result of lemma 1 by showing a decreased 

model fit.  
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The last two columns show the MHARA30 results imposing the regularity 

conditions regionally on ψ□. First we take the mean – as is commonly done – as the 

point estimate for β. As one might expect this ‘regional mean approach’ leads to 

improved model fit measures compared to the global approach (e.g. a reduction of the 

AAAE by 33.6% and 69.7% and a reduction of the MAE by 38.1% and 71.6% in the 

case of the AIM(1) and AIM(2) respectively). However, only the mode, as the point 

estimate for β, guarantees regional regularity within ψ□ (proposition 6). Results from 

the ‘mode approach’ are displayed in the last column of the table, confirming the 

theory outlined in section 3 that the model fit statistics are always superior to the 

‘mean approach’, leading to a further reduction in the AAAE of 1.7% and 7.2% and to 

a reduction in the MAE of 8.7% and 2.3% for the AIM(1) and AIM(2), respectively.  

Concerning the computational efficiency of the algorithm, it is worthwhile to 

note that instead of the full evaluation grid of 8000 points, due to the properties I to V, 

the maximum of 1142 grid points of the set *
gS  ⊂ ψ□

g had to be evaluated only. 

Furthermore, for the AIM(1) often only one vertex had to be assessed. This 

significantly decreased the computational burden compared to previous approaches. 

Summarizing table 2, imposing local regularity increases the model fit in all 

specifications at the cost of violating monotonicity and concavity within ψ, which 

produces estimation results that are problematic in terms of economic interpretation 

and further analysis. Imposing regional regularity solves this problem and still 

significantly increases the model fit compared to the global approach. Moreover, apart 

                                                 
30 For MCMC sampling in the context of the normal SUR model, we want to refer to the very useful exposition by 
Griffiths (2003). 
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from its appealing regularity preserving property, it seems relevant for model fit to use 

the mode instead of the mean. 

 



 

Forecast Error / 
Regularity Violations

evaluated at Input 1 Input 2 Input 3 Input 1 Input 2 Input 3 Input 1 Input 2 Input 3 Input 1 Input 2 Input 3 Input 1 Input 2 Input 3

 AAAE 0.0316 0.0363 0.0174 0.1655 0.1521 0.1416 0.1008 0.0992 0.1080 0.0358 0.0394 0.0209 64.54% 60.27% 80.63%
MAE 0.0953 0.0909 -0.0477 0.4199 0.4591 0.4885 0.1906 0.2037 0.4243 0.1056 0.1217 -0.0622 44.62% 40.27% 85.33%

Concavity Violations 0.00% 0.00% 0.00% 0.00%
Monotonicity Violations 11.54% 0.00% 0.00% 0.00%

 AAAE 0.0095 0.0181 0.0174 0.1118 0.1513 0.1102 0.0794 0.1006 0.1121 0.0143 0.0313 0.0277 81.97% 68.91% 75.27%
MAE -0.0192 0.0502 0.0326 -0.1944 0.4220 0.2526 -0.1294 0.2037 0.2487 -0.0284 0.0888 -0.0538 78.01% 56.42% 78.34%

Concavity Violations 0.00% 0.00% 0.00% 0.00%
Monotonicity Violations 0.00% 0.00% 0.00% 0.00%

 AAAE 0.0467 0.0472 0.0484 0.1484 0.1447 0.1425 0.0971 0.0952 0.1094 0.0483 0.0491 0.0467 50.26% 48.40% 57.35%
MAE -0.2797 -0.2886 -0.2963 0.4202 0.4594 0.5360 -0.2920 -0.2843 0.4357 -0.2734 -0.2560 -0.2698 6.37% 9.93% 38.08%

Concavity Violations 0.00% 0.00% 0.00% 0.00%
Monotonicity Violations 32.66% 0.00% 0.00% 28.01%

 AAAE 0.0042 0.0039 0.0025 0.1514 0.1382 0.1299 0.0470 0.0475 0.0459 0.0070 0.0082 0.0055 84.99% 82.83% 88.02%
MAE -0.0165 -0.0115 0.0111 0.3838 0.4051 0.4167 0.1256 0.1185 0.1259 -0.0199 -0.0272 -0.0192 84.16% 77.02% 84.78%

Concavity Violations 15.39% 0.00% 0.00% 0.00%
Monotonicity Violations 0.00% 0.00% 0.00% 0.00%

 AAAE 0.0024 0.0028 0.0035 0.0962 0.1353 0.0936 0.0286 0.0465 0.0527 0.0013 0.0024 0.0024 95.49% 94.90% 95.52%
MAE -0.0078 -0.0093 0.0111 -0.1764 0.3911 0.2189 -0.0522 0.0992 0.1110 -0.0020 0.0033 -0.0028 96.26% 96.64% 97.44%

Concavity Violations 25.00% 0.00% 0.00% 0.00%
Monotonicity Violations 0.00% 0.00% 0.00% 0.00%

 AAAE 0.0142 0.0151 0.0133 0.1369 0.1329 0.1296 0.0470 0.0470 0.0432 0.0153 0.0154 0.0155 67.54% 67.12% 64.18%
MAE 0.3782 0.4073 -0.3278 0.3865 0.4082 0.4350 0.1391 0.1298 0.1287 0.1459 0.1335 0.1044 -4.93% -2.85% 18.86%

Concavity Violations 26.46% 0.00% 0.00% 11.30%
Monotonicity Violations 0.69% 0.00% 0.00% 9.90%

Simulation experiment based on table 1 and table 2 of Terrell (1995): True Data Generation Process: CES technology with parameter settings a i  = 1; ρ  = 0.75.

Estimation Approach

Local Regularity,        
imposed at pM Gobal  Regularity imposed on ψ□ g                  

(cube approach)
imposed on ψstring

g               

(string approach)

Regional Regularity
Model Model Performance Statistics

Percentage change in  error 
statistics of the string 

approach relative to the 
cube approach

ψC
g

ψ□ g

AIM(1)

AIM(2)

ψ□ g

ψN
g

ψN
g

ψC
g

 

Table 3: Local, global, regional cube and regional string approach - comparison based on AIM cost functions 
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2.4.2 Experiment II – comparison between convex and nonconvex ψ 

The purpose of this subsection is to analyze model performance for different 

definitions of ψ based on empirically relevant price sets.  

The experimental design is based on the same (true) data generation process as in 

the previous subsection. However, instead of using the 64 observations, N = 26 data 

points are (randomly) selected from ψ□ = {p: p ∈ 3
1=×k [.5, 1.5]}, under the restriction 

that a) the smallest and the largest values are (again) elements of the boundary of ψ□, 

i.e. min
kp  = 0.5 ∀ k and max

kp  = 1.5 ∀ k and that b) the points do not belong to three 

convex subsets that are eliminated from ψ□. Suppose further that the purpose of the 

estimated model is to analyze C = 4 (policy) scenarios, and that the scenario prices are 

exogenously determined at 2 points within ψ□ and at 2 points outside of ψ□.31 Then, a 

natural goal is to estimate the function such that all N + C price points are regular 

(objective I) and that the model fit is as good as possible (objective II).  

To evaluate the influence of different definitions of ψ the empirically relevant 

regions are chosen to be  

(a) ψ□, as before approximated by 8000 grid points ψ□
g and  

(b) ψstring = 29

1 ii=
ψ∪ , which covers all 30 = I + 1 price points by connecting 29 

straight lines ψi, i = 1,...I, between pM (which is one of the C selected scenario points) 

and each of the remaining N + C – 1 prices. We chose to approximate each line ψi by 

ψig by taking 20 equidistant grid points between pM and the ith price point, leading to a 

                                                 
31 The values of these 4 prices together with the 26 data points are provided in the appendix part C).  
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total of 580 grid points for ψg only. Further, due to exploiting properties I-V, the 

evaluation grid could be reduced to 520 points, which is displayed in fig. 4.  

Fig. 4: The String grid ψstring
g 

 
Furthermore, for the AIM(1), the grid could be further reduced to just 30 

evaluation points, Zh, for assessing monotonicity and the sign of the first order leading 

principal minor. We refer to (a) as the ‘cube approach’ and (b) as the ‘string 

approach’. 

In table 3, performance-statistics are evaluated at (i) the N = 26 observed price points, denoted 

as ψNg, (ii) the C = 4 out of sample forecasts, ψCg and (iii) the 8000 grid points ψ□
g. 

The first two estimation methods, ‘local regularity’ and ‘global regularity’, serve 

as a reference to the more interesting numerical results of the last three columns, in 

which comparisons between imposing the regularity conditions on ψ□
g versus 

imposing the regularity conditions on ψstring
g are provided: The main result is that the 

model fit measures are significantly improved, favoring the string approach, which 

suggests that it is worth reducing the size of ψ. Reductions in approximation errors 

can be achieved of over 40% and 83% for the AIM(1) and AIM(2), respectively. 

Further details on these percentages are presented in the last column.  
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We also supply performance statistics for the string approach evaluated over the 

cube grid ψ□
g. We do not necessarily advocate such an approach (i.e. defining ψ on a 

subset of the region where subsequent inferences will be drawn). We rather include 

these results32 to again emphasize the trade off between flexibility and regularity: The 

regional regularity approach can become useless when ψ does not cover the 

empirically relevant region (because it is likely that outside of ψ regularity will be 

violated as is the case for AIM(1) and AIM(2)). This example underscores the 

advisability of considering the definition 1 carefully. In particular it is to be assumed 

that it is known prior to the estimation at which ranges of the data the model shall 

generate forecasts. Then we argue that, once it is ensured that the empirically relevant 

price set is regular, it is not particularly important if the function is irregular 

immediately outside the boundary of ψ because inferences will not be drawn from 

those regions. 

 

2.5 Conclusion 

In this paper we have developed a procedure for estimating parametric 

functions subject to regularity conditions derived from economic theory that are 

imposed on a regular region of the function’s domain defined by the analyst. Our 

method leads to improved model fit, and is also computationally much faster and more 

efficient than previous approaches while imposing both curvature and monotonicity on 

                                                 
32 It is also interesting to see that even though the model fit statistics of the ‘string approach’ are clearly superior to 
the ‘cube approach’ when evaluated on ψN

g, this is not necessarily true when evaluated over the cubic region  ψ□
g, 

(i.e. in the case of the AIM(2) the change in approximation errors are negative). The demand quantities for the out 
of sample prices in ψ□\ ψstring are calculated by (7). 
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the entire selected region of the regressor space. In fact the generality of the method 

makes it applicable as a new procedure for the broader problem of estimating 

regression functions subject to nonlinear inequality constraints.  

Our numerical examples illustrate that the tractability of the estimation 

procedure is enhanced through a reduction in the number of regularity checks required 

in the estimation process. Another objective was to improve in- and out-of-sample 

forecasts. The theoretical and numerical results provide evidence that the model fit 

statistics significantly improve by a) using the posterior mode of the parameters and/or 

by b) allowing the desired regular region, ψ, to be some connected non-convex set. 

We further noted that the commonly used Metropolis Hastings technique suffers from 

a bias of posterior density values. Finally we demonstrated that the commonly used 

posterior mean may be inappropriate as a point estimate. For both of the latter 

problems we suggested simple consistent alternatives.  

It will be instructive to apply this estimation methodology empirically to 

estimate supply and demand systems, and other economic models requiring curvature, 

quasi-convexity or monotonicity restrictions. Also, it would be interesting to compare 

these results with the currently developing new techniques in nonparametric 

estimation that attempt to impose shape restrictions. This is to be explored in future 

research. We hope that the methods and results demonstrated in this paper promote 

tractability and facilitate efficiency in the analysis of regularity-preserving economic 

models. 
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Chapter 3 

Can We Close the Gap Between the Empirical Model and 
Economic Theory? 

An Application to the U.S. Demand for Factors of Production 
 

While a difficult literature, we believe that research on models permitting  
flexible imposition of true regularity should expand. 

                                                                                          -- William A. Barnett & Meenakshi Pasupathy, 2003 -- 
 

3.1 Motivation  

A lot of work in economics can be characterized as follows: researchers start by 

making a set of behavioral assumptions and developing a theoretical model. After 

deriving the functions of interest, we (econometrically) estimate the resulting system of 

equation(s), and finally, use the empirical model for policy analysis. The link between 

‘economic theory’ and the ‘empirical model’ is the data.  Two questions motivate this 

paper: is the data in line with the assumed behaviour implied by the economic theory, and 

how can we test for this relationship?  

One critical implication of economic theory is that the estimating functions often 

have to satisfy ‘shape restrictions’.  For example, if it is assumed that a firm exhibits 

behaviour of a cost minimizer (a standard assumption in many economic models derived 

from duality theory), then the dual cost function is concave and monotonically increasing 

in input prices and convex and increasing in output.1 Rejecting these shape conditions is 

then equivalent to rejecting duality theory. 

                                                 
1 Also, by the Shephard Lemma, a dual cost function implies that the input demand system is downward sloping 
such that the law of demand holds and the marginal cost functions are increasing in both prices and output. Similar 
relationships between behavior and shape conditions hold in many other contexts: if individuals are utility 
maximizers, then the indirect utility function is quasi-convex in prices. If firms are profit maximizing, then the 
supply function is upward sloping and the profit function is convex in both output and input prices. 
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In applied work, the researchers’ aim is the consistency of the empirical model 

with the underlying economic theory. In fact, many functional forms represent small 

subsets of the class of functions that the economic theory generates. For example, the 

popular CES and Cobb-Douglas cost functions are both concave and increasing in prices 

(as required by standard micro-economic theory), but these functions are, at the same 

time, restrictive by fixing the elasticities of substitutions. Moreover, this does not allow 

formal testing of the underlying economic theory because these functions are themselves 

strictly within the class of functions generated by the theory.  One way to step out of this 

box is to use flexible functional forms (FFF)—examples are the Translog, Generalized 

Leontief, and Symmetric McFadden and higher order expansions thereof.  These functions 

can (locally) represent any relationship generated by the economic theory as well as 

exhibit shape properties not predicted by the economic theory. 

The potential gap between a well-established economic theory, on one side, and 

the empirical model, on the other, is of great concern, as reflected in the large literature on 

regularity preserving estimation procedures produced in the past 30 years, see Gallant and 

Golub (1984), Diewert and Wales (1987) and Barnett and Binner (2004) for literature 

reviews on this topic.  Nonetheless, in empirical applications theoretical assumptions are 

often violated and policy recommendations derived from such models are dubious at best; 

see the discussions in Salvanes and TjØtta, 1998; Griffiths, O'Donnell and Tan-Cruz, 

2000; Barnett, 2002; Blundell, 2004.2  

                                                 
2 Monotonicity and convexity conditions are the most frequently violated. Curvature alone might be successfully 
implemented with quadratic functional forms but these may fail to produce correct monotonicity. For common parametric 
and semi-non-parametric procedures, these violations are the consequence of the fact that standard estimation methods can 
impose the shape restrictions partially only—as proven by Lau, 1986 for a general class of parametric models. 
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3.2 Outline of Chapter 3 

This paper presents a framework for estimation and inference to test the 

fundamental behavioral assumptions, such as profit maximization or utility maximization, 

characterized by optimizing some objective function subject to constraints. The test relies 

on the following principle: Behavioral assumptions manifest themselves in the form of 

uniquely defined ‘shape conditions’.  The intuition of the proposed test is simple: if we 

statistically reject the implied shape properties, we then reject the economic theory as 

well.  Hence, the objective is to test the gap between the empirical model and the 

economic theory.  

To make our test procedure work, we first estimate an FFF unrestrictedly. If it 

satisfies all the required shape restrictions, then the estimated empirical model does not 

reject the economic theory. If, however, the estimated model violates the shape 

restrictions, a second procedure follows: we re-estimate the function, subject to the side 

conditions, such that all shape conditions are satisfied. Finally, the comparison of the 

restricted estimate to the unrestricted estimate provides us with the test statistic.  

In the literature on FFF, we seldom observe cases where the underlying theory is 

formally tested, and if at all, these tests are rather partial or ad hoc. For example, some 

papers report the percentage of data points at which they violate the shape conditions. This 

informal test statistic, however, is problematic. In fact, it turns out that a function violating 

the shape conditions at all data points can be very “close” to the economic theory. 

However, the other case is possible as well: a function violating a shape restriction at one 
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singular data point can still imply an empirical model that is completely out of sync with 

economic theory. We argue that our procedure therefore outperforms such ad-hoc tests. 

Clearly, the underlying principle (Likelihood ratio) of our proposed test is not 

new.  Rather, we put together different pieces from the existing literature. The 

contribution of this paper lies in (i) pointing out that the previous methods within the FFF 

literature of testing for behavioral assumptions are not based on firm grounds, (ii) discuss 

and compare the performance of a set of estimators with the ability to impose the shape 

conditions, and (iii) illustrate the proposed procedure to an empirical data set.  

For illustration we apply our method to the “Berndt and Wood” dataset—that has 

been intensively used to test the performance of new estimators in the econometric 

literature—estimating a flexible input demand system of four production factors to the 

U.S.  Our empirical results demonstrate that the estimator choice can lead to significantly 

different policy implications.  In particular, we find that estimates based on standard 

estimators could have erroneously rejected the duality hypothesis, whereas our preferred 

estimator provides strong support that the Berndt and Wood data is in fact consistent with 

economic duality theory. 

 The writing of this paper emphasizes the empirical issues relevant to the 

application.  In reviewing the literature on shape imposing estimators, we find few 

arguments on why these methods require application. In the following section we discuss 

why this topic is important in applied economics. Sections 4 and 5 outline various 

regularity-imposing techniques, section 6 illustrates these approaches empirically, and in 

section 7 we provide conclusions.  
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3.3 Preliminaries  

Although many will agree that a sound empirical model must be consistent with 

the underlying economic theory, doubt may yet exist as to the purpose of employing 

regularity-imposing estimators. If we do not allow data to speak for itself—but force it 

into relationships dictated by theory—does this not imply that the assumed economic 

theory is wrong, the model inaccurately specified, or that the data quality is not 

appropriate for the estimation?  

Before offering an answer, we first review some of the concepts involved. In this 

paper we estimate a factor demand system which is derived by Shephard’s Lemma from 

the dual cost function c*(p,y,t) = min{p`x | f(x,t) ≥ y}. Inputs are denoted by x ∈ ℜN
+ and 

are transformed into output y ∈ ℜ¹+ by a smooth production function f(x,t), which depends 

upon technological change t ∈ ℜ¹+. Duality theory implies that c*(z), where z = [p,y,t] ∈ 

ℜ+
2+N, is  

HD1  : homogenous of degree one in input prices p ∈ ℜN
+  

Mp : monotone increasing in p 
  Cp  : concave in p  

Cy  : convex in y, and  
My  : monotone increasing in y.  

If a function satisfies properties HD1, Mp,y and Cp,y, we then say that the function 

is ‘regular’ or synonymously, ‘well-behaved.’ To impose these regularity conditions, the 

literature for many years concentrated on the derivation and estimation of factor demand 

systems from globally regular generating functions, such as the Cobb-Douglas and the 
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Constant Elasticity of Substitution.3 These first order flexible functional forms satisfy the 

restrictions of homogeneity, monotonicity, and curvature by well-known parametric 

restrictions; at the same time, these forms restrict the potential values for the second order 

effects prior to the estimation. This implies that the elasticities of substitutions (which are 

key parameters to reveal, as we have discussed in the introduction) cannot be estimated, 

but are fixed. Consequently, the literature in the 1970s moved toward local approximation 

functions to the true data generating function itself, by series expansions. The result was 

the class of second order flexible functional forms, such as the popular Translog, 

Generalized McFadden, and the Generalized Leontief, providing the capability to attain 

arbitrary elasticities of substitution. Nevertheless, this increased flexibility came with a 

cost: sacrifice of a guarantee of obtaining regularity.4 In fact, a series of studies (for a 

review, see Barnett, Geweke and Wolfe (1991)) demonstrated that these forms often have 

very small regions of theoretical regularity. 

Fig. 1 : True versus approximation function 

 

 

 

 

 

                                                 
3 Global, local and regional describe properties of different subsets of the right hand side variable space ℜN+2

+ (here 
spanned by z). Whereas global refers to the unbounded domain ℜN+2

+, local refers to one singular point or multiple 
singular points, and regional refers to a connected subset of ℜN+2

+.  
4 For linear-in-the-parameters functional forms, LAU (1986) proved flexibility incompatible with global regularity with the 
imposition of both concavity and monotonicity. For example, a globally consistent second order Translog reduces the 
feasible parameter values of its squared terms to be zero, thus restricting the functional form to its first order series 
expansion, the Cobb-Douglas, which has constant cross elasticities of value one. 

Even if the true data generating cost function 
c* is deterministic and regular (bold - green), 
the estimated approximation function ĉ 
(dashed - red) can be irregular.  The 
movement from c* to ĉ is not a simple parallel 
movement. Instead, (because realized 
(weighted) residuals sum up to zero) ĉ 
oscillates around c*. This phenomenon has 
been demonstrated with numerical examples 
by WHM using the Translog, the Generalized 
Leontief, and the AIM. 

cost 

price 
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As previously noted by Moschini (1999), from a positive point of view, violations 

of the regularity conditions may call into question the applicability of the dual demand 

theory to a particular data set. This raises the issue of whether one should really force the 

function to satisfy economic theory, or if one should rather let the data speak and search 

for other (non-neoclassical) explanations. We argue that regularity-preserving techniques 

are indispensable for at least three reasons5: 

 (a) Any finite order flexible functional form c represents an approximation to the true 

function c*. If c* is regular and stochastic, then ĉ, estimated with some non-regularity 

preserving estimator, can fit outliers produced by c* and thus violate regularity. 

(b) The upshot is, even if c* was regular and deterministic, ĉ can oscillate around the true 

relationship. Because of its approximating nature, ĉ has a different tracking behavior over 

its domain, so it does not lie completely above c*, but slightly next to it, as shown in fig. 

1. This is perhaps the most important reason for the use of  regularity-retaining techniques 

in practice. Otherwise one risks erroneously concluding that some data is ill behaved, 

whereas, in fact, the true data generation process is regular.  

(c) A regularity preserving point estimate is required for correctly specifying hypothesis 

tests. More on this issue outlined in the empirical section.  

Having motivated the need for shape imposing techniques, the next section 

reviews a series of estimators that are currently available to economists. The performance 

of these estimators undergoes evaluated in section 6.  

                                                 
5 Empirical evidence demonstrated that economic theory matters: A ‘regular model’ may often forecast better out 
of sample - although their ‘in sample’ fit statistics are inferior compared to an irregular model. This is an interesting 
point but not a general result. For a recent discussion on this, see Edwards and Terrell (2004).  
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3.4 Shape imposing estimators  

The focus of this section is on methods to impose the inequality constraints to obtain 

Mp,y and Cp,y. Such methods can be categorized into three groups: (a) global, (b) local and 

(c) regional imposition of regularity (for definitions of these terms see footnote 2). Global 

and local approaches are by far the most common methods currently employed by 

economists. Our proposed method, following ideas by Gallant and Golub (1984) and 

Terrell (1996), instead pursues the regional approach. Through this process, conditions are 

imposed on a connected subset ψ of the domain of the function being estimated. The 

connected subset represents what we call the empirically relevant region, and is defined 

by the model analyst (see Definition 1 below). In our view this regional approach offers 

important advantages over the local approach because it imposes theoretical consistency 

not only locally, at a given singular evaluation point, but also over the entire empirically 

relevant region of the domain associated with the function being estimated. The method 

also provides benefits relative to the global approach, through higher flexibility derived 

from being less constraining, generally leading to a better model fit to the sample data 

compared to the global imposition of regularity. In the empirical section 6 we test for 

these claims, comparing local, regional and global approaches.  

This regional regularity approach first proposed by Gallant and Golub (1984) has an 

advantage in that flexibility of the functional form can be maintained to a large degree 

while staying theoretically consistent in the region where inferences will be drawn. In 

addition, imposing regional regularity generally leads to a better statistical fit of the data to 

the model, compared to the global regularity approach. However, Gallant and Golub did 
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not demonstrate the tractability of this approach and it seems that empirical 

implementation can be formidable with optimization tools currently available.  

It was not until 1996 that Terrell advanced ideas relating to the empirical application 

of regional regularity. Instead of explicitly using a constrained optimization algorithm as 

in Gallant and Golub, Terrell decomposed the problem into a series of steps: Firstly, a 

convex set ψ of some region of interest in the domain of the function is approximated by a 

dense grid consisting of thousands of singular regressor values. Secondly, using a 

Bayesian framework, an unconstrained posterior distribution of the parameter vector β, 

conditional on the endogenous variable y, pu(β|y), is derived that does not incorporate the 

regularity conditions. Thirdly, a Gibbs sampler is used to draw parameter vector outcomes 

from pu(β|y), and an Accept-Reject algorithm is applied to assess regularity for each 

outcome at all grid points. Finally, point estimates are derived and inferences are drawn 

based on the set of regular parameter vectors and its truncated posterior distribution. This 

procedure has two problems: (a) Due to the approximation of the relevant regressor space 

by the grid, the possibility cannot be eliminated that the function is irregular for some non-

grid points. In this sense this technique does not compel regularity on a connected set but 

imposes local regularity at multiple singular points. (b) The Gibbs simulator requires 

sampling from the entire support Θ of the unconstrained posterior pu(β|y). This can be 

time consuming if, as is often the case in practice, the regular region is only a small subset 

of Θ (Terrell 1996). 

In the next section we propose an estimator that substantially mitigates previous 

difficulties and inconsistencies in applying the regional regularity concept. Here, while 
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referring readers to Wolff, Heckelei and Mittelhammer, 2006 (in the following referred to 

as WHM) for the theoretical matters, we only briefly describe the main steps involved. 

 

3.5 Regional regularity: An alternative  

3.5.1 Definition of ψ and constraints to be imposed on ψ  

The proposed technique is probably best explained through our empirical application 

of section 6 with N = 4 inputs and T = 25 observations.  The two curvature conditions Cy,p 

and the two monotonicity conditions My,p must hold on a connected subset ψ ⊂ ℜ+
2+N of 

the price × output × time space. Cy,p and My,p can be characterized by H = 4 vector-valued-

functions ih(z;β), h = 1,…,H, whereby the restrictions hold whenever, for a given β, i is 

nonnegative for all z in the relevant region ψ, 

i(z;β) ≡ [i1,i2,…,iH] ≥ 0  ∀  p,y,t ∈ ψ. 

Hence for monotonicity and curvature we define the following four sets of constraints:  

i1 = ∇pc ≥ 0,                i2 = ∇yc ≥ 0, 

i3 = – eig[∇ppc] ≥ 0,               and               i4 =  eig[∇yyc] ≥ 0. 

Given the trade off between flexibility, on the one hand and regularity violations on 

the other, we follow the idea of Gallant and Golub (1984) and consider imposing 

conditions regionally. For this purpose we now define a particularly relevant ψ.  

Definition 1: The set ψ is a closed and connected subset of ℜ+
2+N that covers the 

empirically relevant region, defined as containing all T sample observation as 

well as any S regressor points that will be used for subsequent analyses and/or 

simulations based on the estimated model. 
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Note that conceptually previous global and local approaches only differ in the way ψ is 

defined. If i  ≥ 0 ∀  z ∈ ψ, we say that regularity is imposed (i) locally if ψ consists of one 

or more singular disconnected points, (ii) globally if ψ = ℜ+
2+N, and (iii) regionally if ψ is 

some connected subset of ℜ+
2+N. 

Before proceeding, let us restate the importance of definition 1. In particular it is to 

be assumed that it is known prior to the estimation at which ranges of the data the model 

shall generate forecasts. We argue that once it is ensured that the empirically relevant set 

ψ is regular, it is not particularly important if the function is irregular immediately outside 

the boundary of ψ because inferences will not be drawn from those regions. Whereas the 

functions shape properties like Mp,y and Cp,y on ψ are purely determined by economic 

theory, the coordinates of ψ (within the right hand side variable space ℜ+
2+N) have to be 

defined by the analyst having in mind the purpose of the model, hence knowing about the 

T  + S data points, i.e. at which ranges one aims to make inferences.  

3.5.2 Bayesian framework and numerical integration 

 In Bayesian econometrics the distribution of interest is the regularity posterior 

p(β|y,ψ), which in our case depends on ψ.6 We now turn towards the simulation 

technique used to generate outcomes from p(β|y,ψ), which are then used to obtain 

point estimates and to draw posterior inferences. Based on Griffiths, O'Donnell and 

                                                 
6 Let Θ be the K-dimensional parameter space. If all regularity conditions hold for all values of z in ψ, the regular 
parameter set is defined as ΘR|ψ = {β∈Θ: i(p;β) ≥ 0 ∀ z ∈ ψ}, hence ΘR|ψ is dependent on the choice of ψ. The marginal 
prior on β is specified as an indicator function p(β|ψ) = {β ∈ ΘR|ψ} where the prior equals 1 if regularity holds at the 
value β ∀ z ∈ ψ, and equals 0 otherwise. Throughout the paper we assume the standard ignorance prior for the N × N 
covariance matrix |Σ|-(N+1)/2. The posterior distribution for β is then derived by applying Bayes rule, p(β|y,ψ) ∝ ∫L(β,Σ|y)⋅ 
{β ∈ ΘR|ψ}⋅ |Σ|-(N+1)/2dΣ, where L(β,Σ|y) is the normal likelihood function. 
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Tan-Cruz (2000) a modified7 Metropolis-Hastings Accept Reject Algorithm 

(mMHARA) is used to generate J (pseudo-) random outcomes, b(j), j = 1,…,J from 

p(β|y,ψ) on the regular support ΘR|ψ = {β: i(p;β) ≥ 0 ∀ z ∈ ψ}. To account for the 

regularity prior {β ∈ ΘR|ψ}, the simulator should ensure that any drawn parameter 

vector b(j) implies regularity of c(z;b(j)) for every point z in the predefined set ψ, i.e. b(j) ∈ 

ΘR|ψ ∀ j. Since there are an infinite number of points in ψ, they cannot all be checked 

explicitly. The connectedness is approximated by a fine grid, denoted by the disconnected 

set ψg ⊂ ψ which possibly consists of tens-of-millions of equidistant distinct points. 

Within the Metropolis Hastings chain an additional Accept-Reject algorithm is 

implemented to guarantee that ∀ b(j) the regularity conditions hold for any single grid 

point. This implies that b(j) ∈ ΘR|ψg ∀ j, whereby ΘR|ψg is the approximated regularity 

posterior support, which will tend toward the actual set ΘR|ψ the finer the approximation 

grid ψg.  

3.5.3 Approximating ψ 

Key to the success of empirical implementation of the technique is to have ‘good’ 

construction procedures for ψg. The design of ψg not only influences our confidence in the 

approximation but also determines the tractability of the method since a high number of 

grid points increases computing time considerably; too few grid points, however, will 

raise concerns about potential violations of the regularity conditions in ψ\ψg. To begin the 

discussion we define (as in Terrell, 1996) ψ□ as a hypercube (the superscript □ refers to the 

cube approach): Let zi(ψmin) and zi(ψmax) represent the minimum and maximum of the i-th 
                                                 
7 WHM identified an error in the previous MHARA literature that can bias the simulated regularity posterior. WHM 
suggested a simple alternative to correct for the bias.  
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right hand side variable. The grid is constructed by selecting F = 10 equidistant values for 

each variable: zf
i = zi(ψmin) + (f-1)F-1(zi(ψmax)-zi(ψmin)) ∀ f ∈ {1,2,…, F} and using all 

possible Q = 106 = Fdim(z) combinations to generate the Q-grid ψ□
g ⊂ ψ□. In order to 

circumvent the approximate nature of this representation, WHM identified conditions 

under which checking a certain key point in ψ□ guarantees regularity in well defined 

neighborhood. The purpose is then to find a collection of such key points that guarantees 

overall regularity ∀ z ∈ ψ□. These procedures are described in detail in WHM and 

implemented in the application below, leading to a reduction in regularity checks to a total 

of Q* = 343900 < Q = 106. Notably, the new Q*-grid, while improving the computational 

speed of the algorithm, maintains the same accuracy of approximation obtained from the 

original Q-grid.  

This reduction of regularity checks can be improved; up until this point the 

literature on regional regularity defined ψ as one convex set ψ□. (Convexity had been 

originally a requirement for the constraint optimization program by Gallant and Golub, 

1984.) We relax this assumption and let ψ to be any connected set satisfying Definition 1. 

By constructing a nonconvex set, while maintaining the same accuracy of the 

approximation obtained from the original 106 grid points, the number of regularity checks 

is reduced to occur, for example, at 316 = 1+(F-1)(T+S) grid points only, if the number of 

out of sample forecasts S=10. These grid construction rules lead to enormous cutbacks in 

computing time, and they enhance the tractability of regional regularity preserving 

estimators.  
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3.5.4 Point estimates and the relation to Maximum Simulated Normal Likelihood 

 As far as we are aware, all previous studies define the point estimate as the 

mean E[β] of the regularity posterior p(β|y,ψ). This may result in regularity violations 

because in general ΘR|ψ is not a convex set. Instead using the mode β(mode)  = 

{ }
R

g

garg max ( | , )p
∈β Θ ψ

β y ψ guarantees that the point estimate resides in the regular support 

ΘR|ψ. In order to approximate the solution based upon the MCMC outcomes 
( )

1{ }j J
j=b , 

one can simply compare the values pu(b(j)|y) ∀ j resulting from the mMHARA as 

b(mode) = { }( ) / 2

( )
| ( ) ( ) |argmax j N

j
N L −−

b

Σ b . This point estimate is used in the application 

below.  

The proposed technique can be applied to the Bayesian and to the Classical 

frameworks. In the Classical framework one would maximize a likelihood function 

subject to the inequality constraints and the numerical point estimate of the maximum 

simulated likelihood is the mode. This Classical mode is exactly identical to the above 

defined Bayesian point estimate β(mode) if, as we have done above, an uninformative prior 

distribution on ΘR|ψ is employed (see footnote 5). Here we prefer the Bayesian 

interpretation because finite sample confidence intervals and standard errors of functions 

of β can be directly computed with the MCMC draws. Instead deriving the Classical 

distributions could be tremendously challenging and in general requires more time 

intensive numerical procedures (like bootstrapping). The computational burden is mainly 

due to the many inequality constraints i ≥ 0 which have to hold for all z ∈ ψ. Also since 
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β(mode)
 could lie on the boundary of ΘR|ψ further complications arise (see Geweke 1986, 

Andrews 1999, 2001).  

 

3.6 Empirical Illustration 

Background to the Application of Estimating Input Demand Systems 

An motivating application exemplifies the use of the demand system: Climate 

change concerns drive many countries to debate over imposing a tax on energy use 

intending to reduce CO2 emissions. To quantitatively assess the costs and benefits of such 

a policy, an analyst requires two information: the own price elasticity of demand and 

secondly, the cross-price elasticities that describe the effects on important markets that are 

linked to energy; in fact with the tax policy in place, firms could substitute away from 

energy towards other inputs such as capital and labor—which may be less polluting but 

more costly. To this end, estimated demand system have provided key ingredients to 

answer many important questions in production analysis (Chambers 1988, Griffiths, 

O’Donell and Tan Cruz 2000, Kumbhakar and Tsionas 2005), policy studies and welfare 

analysis (Evans and Heckman 1984, 1986, Koebel, Falk and Laisney 2003), as well as in 

the debate on the sources of economic growth (Mankiw, Romer and Weil 1992, Hsieh 

2000, Antras 2004).  

Our empirical illustration contains 3 subsections: In section 6.1, we re-estimate the 

demand system for four production inputs to the U.S. manufacturing sector using the 

Berndt and Wood (1975) data set for capital (K), labor (L), energy (E), and materials (M). 

For this data set it has been reported to violate the regularity conditions implied by 
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economic theory. For that reason the KLEM data has been applied to a considerable 

number of regularity imposing techniques providing a substantial basis on which to 

investigate the performance of these alternative estimators (see among others Berndt and 

Wood 1975, Berndt and Khaled 1979, Galant and Golub 1984, Diewert and Wales 1987, 

Barnett, Geweke and Wolfe 1991, Friesen 1992, Terrell 1996). 8   

But one can ask if these theoretical notions have any practical importance. For 

instance, does the MCMC methodology produce elasticity estimates that are significantly 

different from the above other estimation approaches? Section 6.2 looks at the elasticity of 

substitution between capital and energy, a parameter that has attracted a great deal of 

attention in the last decades (see e.g. Apostolakis 1990). Finally, the last section goes one 

step beyond and asks of whether duality theory is appropriate for modelling the U.S. input 

demand system. Simply forcing the empirical model to be consistent with economic 

theory (by employing shape imposing estimators) could produce misleading results. 

Instead formal hypothesis tests should be carried out. 9  

The Berndt and Wood data have been described in more detail in many places in the 

literature (e.g. Berndt and Wood (1975), Berndt and Khaled (1979), Gallant and Golub 

(1984)). Table 1 provides summary statistics of the annual data from 1947 to 1971. In 

particular the min/max values of the right hand side price variables will be considered 

below for the construction of the various ψ sets. 

                                                 
8 In fact, it may even be one of the most frequently estimated input demand systems in the entire econometrics literature.  
9 This clearly is of concern when investigating such important issues as the evaluation of the costs and benefits of 
an environmental tax. As a consequence of a 10% increase in energy price, calculated differences of the sectors 
ability for capital accumulation range in the magnitude of hundreds of million U.S. dollars, depending on which 
estimation approach is chosen. These numbers show that the impact on policy forecasts could be disastrous if 
regularity conditions are violated or the assumed substitution pattern is mistaken. Of further practical interest are 
the results that energy is a substitute to all inputs except capital and that energy demand is inelastic with the own 
price elasticity significantly about -.67. 
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Table 1: Summary statistics of the Berndt and Wood data set from 1947 to 1971 
 input quantities input prices output 

 K L E M pK pL pE pM y 

mean 20.45 106.07 16.78 237.56 1.18 1.77 1.35 1.30 313.80 
std 7.77 43.59 5.54 85.14 0.19 0.46 0.12 0.14 87.67 
min 8.58 45.10 7.76 112.35 0.74 1.00 1.00 1.00 182.83 
max 34.11 190.26 29.48 407.71 1.50 2.76 1.65 1.55 466.83 
Variables are produced using index numbers and deflators. For details on the data construction see Berndt 
and Wood (1975) and Berndt and Khaled (1979). 
 
3.6.1 Comparing Shape Imposing Techniques – An Illustration using the Berndt and 

Wood Data 

The main purpose of the following eight sets of estimations is to assess potential 

advantages of the regional approaches compared to the local and the global approaches 

both in terms of model fit and the propensity for regularity violations. Performance 

statistics of various estimators as applied to the second order flexible Generalized Leontief 

cost function 

c(z;β) = 1 1

0.5 0.5
i j

N N

ij i jb p p
= =

Σ Σ   + 1i

N

=
Σ bipi  + 1i

N

=
Σ bi tpity + t 1i

N

=
Σ aipi    

            + y2
1i

N

=
Σ β ip i  + yt2

1i

N

=
Σ γ ip i  

with bij = bji, are displayed in table 2. In order to be able to directly compare our results 

with previous studies, we use the exact same specification of the demand system as in 

Diewert and Wales, 1987 and in Terrell, 1996.10 Hence the N estimated equations are  

x/y  = ∇pc(z;β)/y  + u .      (1)  

                                                 
10 For a motivation of this particular specification see Diewert and Wales (1987) and Terrell (1996). In particular, 
all right hand side variables are assumed to be exogenous. This seems to be a standard approach in this literature:  
Except for the Berndt et al. articles in the seventies, none of the above papers estimating the KLEM input demand 
system uses instruments. For a justification of this, see the recent discussions by Diewert (2004), Barnett and 
Binner (2004), and Antras (2004). Another possible extension is to estimate the system in the context of an error 
correction model (Friesen, 1992). For both 3SLS and the ECM specification it is straightforward to impose shape 
conditions by using Terrell’s Gibbs and the mMHARA simulator.   
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It is assumed that the T × 1 error vectors un, n = 1,…,4 are contemporaneously correlated, 

such that the estimating equations can be written in form of the Gaussian seemingly 

unrelated regression (SUR) system. Finally t = 1,2,…T. For details on the specification see 

Diewert and Wales, 1987 and Terrell, 1996.  

Duality theory restricts the Generalized Leontief cost function to be Mp, My, Cp 

and Cy. In general, economists are well aware of these fundamental relations, imposing all 

four of these conditions when estimating first order flexible functional forms. In contrast, 

the standard practice is that only a small subset of these conditions is enforced when using 

the Generalized Leontief or any other second order flexible forms. In particular, the three 

conditions Mp,y and Cy conditions have rarely been considered. A remarkable exception of 

a paper explicitly imposing both Cp and Mp is Terrell 1996. His results will be shown 

below. But still, violations of the other restrictions My and Cy lead to serious flaws, such 

that, for example, with rising output, ceteris paribus, the total cost of production decreases. 

The fact that the literature ((Berndt and Wood 1975, Berndt and Khaled 1979, 

Galant and Golub 1984, Diewert and Wales 1987, Berndt, Geweke and Wolfe 1991, 

Friesen 1992, Terrell 1996) contemplated subsets of the regularity conditions cannot be 

justified from a perspective of economic theory. Why should a violation of monotonicity 

be less harmful than a concavity violation? This development might only be explained by 

the lack of estimators that have the ability to maintain overall regularity. Such a gap 

between economic theory and the empirical model is problematic for the interpretability 

of the results and especially worrisome if one wishes to derive any policy conclusions for 

the U.S. manufacturing sector, which accounts for about 20% of the GDP. 
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To our knowledge for this input demand system this paper represents the first study 

systematically taking into account overall regularity when using flexible functional forms.  

Table 2: Regularity imposing sets  

Approach Definition of ψ Comment 

Unconstrained ψ = Ø: 
Mp,y and Cp,y is not imposed. ‘Unconstrained’ refers 
to the ‘inequality constraints’ only: we do impose 
symmetry and HD1 by parametric equality 
restrictions. 

Local 

 
ψ = z1 

We use the first observation in the sample (1947) 
because this represents our results comparably to the 
tables in Berndt and Wood (1979), Diewert and 
Wales (1984), Barnett et al., (1991) and Terrell 
(1996). Imposing the regularity conditions at other 
points in the sample space does not essentially 
change the empirical results. 

Global ψ = ℜ+
2+N Nonnegative orthant of all right hand side variables 

of z. 
Ψ□p

1 = {p: p ∈ 3
1k=× [1.0, 

1.5]} 

This was chosen by Terrell (1996). It does not cover 
the entire empirical relevant data space. Some 
observed prices lie outside the [1.0, 1.5] interval, see 
min/max values in table 1.*  

Ψ□p
2= {p: p ∈ 3

1k=× [0.5, 

3.0]} 
This set was chosen by Terrell (1996). It ensures that 
ψ□p

2 covers all observed prices and beyond.*  

Cube11 

approach 

Ψ□z
i = 

{z∈ψ□p
i×[ymin, ymax]× [tmin, 

tmax]} 

ψ□z
i, i ∈ {1,2}: These sets expand ψ□p

i over the 
remaining dimensions t and y.  

   
   

   
   

   
   

   
   

   
   

   
  R

eg
io

na
l 

String 

approach 

 

ψstring = 
26

1 it=
ψ∪  

ψstring covers 26 = T+1 points in ℜ+
2+N  by connecting 

straight lines ψi between the right hand side variables 
mean, zM, and each of the T observations. We 
approximate each line ψi by ψig by taking 10 
equidistant grid points between pM and the ith 
observation zi, leading to 1+(F-1)T = 226 grid points.   

* Set is Lebesgue measure zero because it does not expand into the dimension y and t. 

                                                 
11 In this paper all grid sets ψ□”

ig are constructed with F = 10, as in Terrell, 1996. As pointed out by a referee a constant F 
is not unproblematic since the likelihood of regularity violations at non-grid points varies as the cube’s volume V changes. 
Here V increases dramatically from V (Ψ□p

1) = 0.0625 to V (Ψ□p
2) = 150.0625. As an alternative one could express the 

number of grid points as a function of the volume, F (V). 
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Columnwise table 3 displays the various approaches imposing restrictions on differently 

designed sets ψ, which definitions are first provided in table 2. In Table 3, the symbols in 

parentheses indicate which shape conditions are imposed. For example, ψ□p
2(Mp,Cp) 

implies that the estimator imposes concavity and monotonicity with respect to p. If all four 

regularity conditions are imposed, we simplify notation to (‘all’). For each approach we 

display the results as applied to both point estimates, the mean of the regularity posterior 

distribution, and the mode. Ex post, as in Terrell, after each estimation, the regularity 

conditions are evaluated at empirical relevant sets ψ□
1 and ψ□

2 as indicated in the 

respective rows. Violations are expressed as the percentage of grid points where violations 

occur, whereby the grids are constructed as outlined in above section 5.3.  
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 Table 3: Generalized Leontief Input Demand System, estimated by 8 different approaches 

62 
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3.6.1.1 Unconstrained estimation  

In the first column of table 3 we estimate the demand system by iterated SUR 

unrestrictedly. Firstly, compared to any other columns, the unrestricted estimate bu 

provides the best model fit statistics but c(z;bu) violates the regularity conditions 

everywhere in ψ□ leading to, among other things, a failure of the law of demand.12 

Contemplating these poor regression results, a researcher could pursue a multitude of 

directions, until something more consistent is obtained, i.e. trying other functional forms 

or applying the data to another economic theory which might be less demanding in terms 

of the regularity conditions. If goalposts are changed however in an ad hoc manner, such 

procedures can be rife with statistical testing and verification problems. Bearing in mind 

the discussion in section 3, the fact that c  heavily violates the regularity conditions does 

not necessarily imply that Generalized Leontief functional form is inappropriate or that the 

duality theory has to be rejected. Hence other estimation approaches leading to a well-

behaved economic model are required to test this hypothesis. (More on the hypothesis 

testing, see section 6.3). 

3.6.1.2 Global Approach  

The global approach to impose concavity is probably one of the most common 

techniques, when estimating flexible input demand systems. In the case of the Generalized 

Leontief, this unfortunately allows the cost function to model substitutes only (Diewert 

and Wales 1987). Because in the KLEM data at least energy and capital seem to have 

stark complementary relations, maintaining global concavity reduces the model fit. 

                                                 
12 For comparison, this estimation exactly repeats the unrestricted estimation of Diewert and Wales (1987: table II) and 
TERRELL’s (table 3: 1996).   



 64

Moreover, the global imposition of concavity is not sufficient for overall regularity. In 

fact, all remaining conditions are violated as can be seen in column 2a. Now, applying the 

global approach not only to Cp but to all regularity conditions (estimated by (1) with 

bij
u=0, i≠j) a-priori fixes the elasticity of substitution estimates to 0 (see footnote 3). Here, 

as displayed in column 2b, such as procedure performs very poorly in terms of model fit 

because this globally regular estimate bgr emerges from the ‘small’ parameter subset 

ΘR|ℜ+
2+N ⊂ ΘR|ψ. In conclusion our empirical results indicate that the global approaches 

are extremely restrictive, a finding that agrees with the results in Diewert and Wales, 

1987, Terrell, 1996 and the simulation study in WHM.  

3.6.1.3 Local approach  

The third column displays results from local imposition of overall regularity. As 

expected, here model fit is inferior when compared to the unrestricted approach, but is 

superior to the global approach. Unfortunately, the local approach does not guarantee that 

regularity is satisfied in all of the relevant empirical areas leading to very high percentages 

of violations at ψ□
2.  One has to be careful, however, with the interpretation of these 

statistics on “percentage of violations at grid points”: On one side, violating shape 

conditions at 100% of the data points does not necessarily imply that the estimated model 

is “very far” from a good model. And on the reverse, a single violation of one grid point 

could lead to extremely poor results. This latter point is illustrated in Fig. 2 (this will be 

further discussed in section 6.3). Also note that ψ□
1 does not cover all the relevant data 

points (compare the min/max values in table 1 and the definition of ψ□
1 in table 2).  
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Since neither the unconstrained, local nor the global approach can produce a well-

behaved flexible demand system of interest, we now turn to the regional approach.   

 

 

 

 

 

 

 

 

3.6.1.4 Regional Regularity 

We first replicate Terrell’s (1996) estimation, i.e. using the Gibbs accept reject 

simulator and the same ψ-sets. Terrell applied this method to impose Mp and Cp. This 

successfully leads to regularity preserving results if interested in the function’s domain 

ψ□z
1. In contrast, on the domain ψ□z

2, the constraints with respect to y are violated (see 

column 4 and 5 in table 3).  

We now turn towards the estimation method described in section 5 using the 

mMHARA simulator.  This method effectively imposes all regularity conditions on any 

set ψ of interest. Hence, as shown in the columns 6 and 7 regularity holds in ψ□z
1 and ψ□z

2.  

We display the results for both, the mean and the mode of the posterior. Interestingly, in 

column 7 the mean estimate bmean violates Cp, although Cp had been imposed! The reason 

that bmean ∉ ΘR|ψ□
2 is due to the fact that the regular parameter support ΘR|ψ□z

2 is not a 

Fig. 2: Illustration of an irregular cost function violating the shape restriction at one grid point 
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convex set and demonstrates the importance of the proposition outlined in section 5.4. 

Instead our preferred point estimate, the mode bmode ∈ ΘR|ψ□
2 and it guarantees regional 

regularity within the domain ψ□
2. In case of column 6, the mode increases the model fit 

(as measured by the likelihood value) by over 10% (from 1.14×10-2 to 1.26×10-2). The 

percentage increase is even more dramatic in the case of imposing the regularity 

conditions on the larger set ψ□z
2, in column 7, achieving an increase in model fit of 43.6%.  

So far, we only have described the approaches based on a convex cube ψ□. A 

motivation for the KLEM data set to investigate in non convex sets for ψ is probably best 

described by Gallant and Golub, 1984: ‘The exogenous variable [pt and yt] for t  = 

1947,…,1971 lie in a five dimensional space and can be projected into a three 

dimensional space with a negligible loss of information…The projected point cloud has 

an irregular shape. It is a sort of a fat rope lying mostly on the ground in the shape of a 

tilde (~) with the two end-points and the middle elevated.’ This description indicates that 

constructing ψ□ as a convex cube including all the data points may lead to an unnecessary 

voluminous set containing relatively little data information. A simple construction rule of 

a nonconvex set containing all the KLEM data points is described in Table 2 and labelled 

as the ‘string approach’.13 Comparing the posterior mean of the string approach versus the 

mean of column 6 implies that here mMHARA samples from a regular parameter superset 

ΘR|ψstring ⊃ ΘR|ψ□z
1, potentially benefiting the flexibility of the functional form. Finally, 

note that comparing the mean of the string approach to the mode leads to an improvement 

of the model fit of about 5.3%.  

                                                 
13 It is straightforward to incorporate other out of sample areas into the construction of ψ, i.e. in order to obtain 
more general domains relevant for forecasting purposes. See WHM for details.  
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We particularly like to work with the string approach because of its attractive 

features. (a) It represents the method which is to the largest possible extend ‘data driven’, 

(b) it leads to a well-behaved demand model and (c) with 226 regularity checks, it is 

computationally much faster than the regional regularity preserving cube method, that 

checks one million times, as we have discussed in section 5.3. 14  

In table 3 we also supply performance statistics for the various approaches evaluated 

over a set which is larger than the set on which regularity was imposed. We do not 

necessarily advocate such an approach (i.e. defining ψ on a subset of the region where 

subsequent inferences will be drawn). Rather we include these results to again emphasize 

the trade off between flexibility and regularity: The regional regularity approach can 

become useless when ψ does not cover the empirically relevant region because it is likely 

that outside of ψ regularity will be violated. This underscores the advisability of 

considering the definition 1 carefully. In particular it is to be assumed that it is known 

prior to the estimation at which ranges of the data the model shall generate forecasts. We 

argue that once it is ensured that the empirically relevant set is regular, it is not particularly 

important if the function is irregular immediately outside the boundary of ψ because 

inferences will not be drawn from those regions. 

Summarizing table 3, unconstrained and local regularity estimates increase the model 

fit in all specifications at the cost of violating regularity within ψ. This produces 

estimation results that are problematic in terms of economic interpretation and further 

analysis. Imposing regional regularity solves this problem and significantly increases the 

                                                 
14 With the Q*-grid construction approach we need about 30% of the original Q-grid computing time (when imposing the 
shape conditions on the more dense Q-grid). In comparison the new string approach estimation is much faster requiring 
less than 0.05% of the original computing time.  
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model fit when compared to the global approach. Moreover, apart from its appealing 

regularity preserving property, it is relevant for model fit to use the mode instead of the 

mean. Finally, the new proposed technique reduced computing time significantly, making 

the regional regularity approach more tractable for empirical analysis. Instead of the full 

evaluation grid consisting of over one million points, only a maximum of 343900 points 

had to be evaluated only for the cube approaches. Furthermore, for the string approach 

only 226 points had to be assessed. This significantly decreased the computational burden 

when compared to previous approaches. 

We have identified effective tools to generate well behaved input demand models. 

Initially, this may appear to be of interest to econometricians or economic theorists only. 

The imposition of regularity conditions, however, also leads to noticeable changes in own 

and cross price elasticities estimates, parameters that are of immense interest to a wide 

range of applied economists. These changes are investigated in the following subsection. 

3.6.2 Elasticities 

Further insights into the effects of imposing shape restrictions can be gained by 

examining estimated marginal posterior distributions for input demand elasticities 

∂xi/∂pj·xi/pj. Table 3 reports the means, modes and standard deviations of these by 

mMHARA simulated density functions. For the purpose of analyzing the potential effects 

of an environmental tax on energy use, here we are interested in the capital energy 

elasticity. The long-run growth potential of the manufacturing sector depends crucially on 

the magnitude of this parameter (see Dasgupta and Heal (1979), Chapter 6). In particular 

the question of whether capital and energy are complements or substitutes has received a 
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great deal of attention (see e.g. Apostolakis 1990). If they are substitutes, then an increase 

in energy taxes would lead, ceteris paribus, to an increase in the capital stock, potentially 

benefiting the sector in the long run. In this case, energy conservation policies promoting 

new energy-saving physical capital would be predicted to have the desired effect. 

However, if they are complements, then rising energy prices would adversely effect 

capital formation and, hence, such policies would be counterproductive. Even without an 

explicit energy tax, a complementary relationship is generally more concerning to 

economists, in particular in the present times of high energy prices.   

Fig. 3: Posterior distributions of the elasticity of substitution  
between energy and capital  
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Table 4: Price elasticities matrices at 1947 
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In Fig. 3 we present the results of the cross price elasticity of energy with respect to capital 

eEK under four different levels of constraints. The global concavity approach produces the 

far most right distribution having a mode value at eEK = 0.0145 (see Table 4) suggesting 

that capital and energy are weak substitutes. The entirely data driven ‘unconstrained’ 

approach would suggest that capital and energy are complements. Since the unconstrained 

estimate however violates duality theory, one has to be very careful with such a 

conclusion. The regularity preserving string approach produces the distribution only 

slightly to the left of the unconstrained approach with the mode at eEK = -0.1412. Instead, 

the cube approach produces a distribution, which is likely to be biased towards zero.  

Table 5: Estimated changes in capital stock in millions of U.S. dollars in 
manufacturing sector due to 10% increase in energy price 

  Global concavity approach String approach 

 year (lower 5% 
bound) point estimate (upper 95% 

bound) 
(lower 5% 
bound) ´point estimate (upper 95% 

bound) 

elasticity eEK  (0.00102) 0.01450 (0.04007) (-0.20928) -0.14120 (-0.07555) 

1947 (1.0) 13.5 (37.3) (-194.8) -131.5 (-70.3) change in 
capital stock  2001 (45.6) 646.0 (1785.2) (-9323.9) -6290.7 (-3365.7) 

In the first row calculations are based on the year 1947. This represents our results comparably to the 
tables and figures provided in previous studies (such as Berndt and Wood (1979), Diewert and Wales 
(1984), Barnett et al. (1991) and Terrell (1996)). Numbers in parenthesis provide the 90% coverage 
probability intervals of respective changes and elasticities. Intervals are computed by using 100,000 
mMHARA simulator outcomes.  
 
 Table 5 illustrates the enormous consequences of using different estimators. 

Results using the cross price elasticity estimate of the standard global concavity 

approach imply that a 10% increase in energy price leads in the U.S. manufacturing 

sector to a 14 million U.S. dollars increase in capital formation.  Instead using our 

preferred mMHARA string approach predicts a significant decrease of the capital 

stock by about 132 million dollars. The second row uses the most recent 2001 data 

provided by the Bureau of Labor Statistics. Due to the use of the different estimators, 



 72

the same calculations lead to an absolute change in capital stock of about 7 billion 

U.S. dollars (= 6.3 + 0.6). Given that in the year 2001 the total value of the capital 

stock in the manufacturing sector amounts to 446 billion dollars, the change of 7 

billion solely due to the use of different estimators is alarming. Finally note that the 

changes between the global approach and the string approach are statistically very 

significant.15 This demonstrates that when assessing the costs and benefits of an 

environmental tax, one must be very careful about the estimator choice because the 

differences in significance and the substitution patterns could lead to dramatically 

different policy recommendations. In particular here the global approach leads to very 

misleading results.  

Three more observations are notable. Firstly, comparing the spreads of the 

distributions a robust pattern arises. The larger ψ, the smaller is the sample variance of the 

posterior distribution. Although one might be attracted by an estimator with a small 

variance, choosing the estimator on this basis would be very misleading. Here as can be 

seen from table 3, the variance of the estimator is rather inversely related to the model fit 

statistics. For a simple proof, that expanding the regularity imposing set, ceteris paribus, 

decreases the supremum of any statistical criterion functions measuring the model fit, see 

WHM, lemma 1.  

                                                 
15 This can also be seen from Fig. 3 by noting that the joint overlap of the respected estimated distributions contains little 
probability mass only, the 5 and 95 percentiles are displayed in Table 4.  
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Fig. 4: Posterior distributions of the own price elasticity of demand for labor  

 

Secondly, from Fig. 3, an apparent pattern suggests that the starker the restrictions, 

the greater is the difference in the relative positions between the unrestricted approach and 

the restricted approaches. One therefore could conclude that, the unrestricted approach 

might be a good ‘approximation’, since it seems to be close to the string approach. 

Although for many parameters this correlation seems to be holding, there exist some 

important exceptions destroying this analogy. For example, the own price elasticity of 

material of the unconstrained approach is positive (see table 4). In contrast all regular 

distributions are truncated at the value of 0 assigning zero probability to the positive 

orthant. As another example consider Fig. 4, which displays the posterior distributions of 

eLL. Even though the unconstrained mode of eLL lies in the regular nonpositive orthant, 

about 20% of its probability mass falls into the irregular positive area. The posterior with 

the strongest left inclination is produced by the string approach, followed by the cube 

approach and the global approach. This is a completely different ordering of the relative 

positions of the distributions as for eEK.  
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Thirdly, the distribution of the elasticity estimators are not normal; in some 

instances it would be misleading to use the standard errors in table 4 to construct 

symmetric confidence intervals. One would be better advised to use the percentiles of the 

posterior distributions.  

3.6.3. Does the KLEM data set support duality theory?  

3.6.3.1 Testing Duality Theory using a regionally regular estimate 

For the KLEM data set, section 6.1 demonstrated that regularity imposing 

estimators are required to make the empirical model consistent with the assumed 

underlying economic theory. Forcing the data into such theoretical relationships should 

raise serious concerns whether the empirical evidence supports the duality theory, or if the 

economic theory should be rejected. In order to investigate this issue, a simple hypothesis 

test can be carried out. We test the unrestricted estimate bu (table 3, column 1) against the 

hypothesis of ‘duality theory’. The null of ‘duality theory’ hypothesis is represented by the 

regionally regular estimate brr of the string approach (since brr, (column 8) satisfies all 

shape restrictions, the model c(z,brr) is consistent with duality theory). F, Wald and 

Likelihood Ratio tests (with Bartlett correction) are carried out. The duality theory 

hypothesis is not rejected by any test at the 5% and 10% significance levels. Similarly, 

using the uninformative Bayes factor of 1, the posterior odd ratio in favor of the well-

behaved model is 0.874 (Zellner, 1971).16 This leads to the conclusion that the KLEM 

data in deed might have been generated by an underlying cost function that is consistent 

with duality theory.  

                                                 
16 A common alternative is to report the percentage of data points where regularity violations occur. This percentage, 
however, should not be interpreted as a test statistic. For example, despite the fact that the hypothesis tests cannot reject 
the regular model, our unconstrained estimate violates regularity at 100% of the data points.  
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3.6.3.2 Over-rejection problem using standard estimates 

As indicated in section 3, the availability of regularity preserving techniques 

leads to improved hypothesis testing. This point is now demonstrated with the KLEM 

data. Suppose no regional regular MCMC estimates were available. Then, to carry out 

a duality theory hypothesis test, the only alternative would be to use the globally 

regular parameter bgr (column 2b) as representing the null (since all other parameter 

estimates violate the implied shape conditions of the duality theory, none of these other 

estimates could represent the null). Testing bu against bgr however leads to over-rejection. 

This is due to the fact that bgr is a member of the much smaller subset ΘR|ℜ+
2+N  ⊂ ΘR|ψ. 

To show this fact for the KLEM data, we repeated the above procedure (from section 

6.3.1) by testing bu against bgr. In stark contrast to the above findings, here the F, Wald 

and Likelihood ratio test results erroneously would lead to the conclusion that the duality 

theory hypothesis ought to be rejected. With only 0.189 in favor of the well behaved 

model, the Bayesian posterior odd gives the same result.  

In conclusion, from 5.3.1 the U.S. data do indeed seem to support the duality 

theory hypothesis. Using standard econometric methods in 5.3.2 creates an unfortunate 

divide between the empirical model and the underlying economic theory. Using instead 

our regularity preserving mMHARA estimator closes this gap.  
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3.7 Conclusion   

Frequently, economic theory places shape restrictions on functional relationships 

between economic variables used to model technology or economic behavior. Well 

known examples are curvature and monotonicity restrictions that apply to indirect 

utility, expenditure, production, profit, and cost functions. Unfortunately, when using 

flexible functional forms, estimated functions frequently violate these regularity 

conditions. Clearly, such a gap between economic theory and the empirical model is 

problematic for the interpretability of the results, and especially worrisome if one wishes 

to derive forecasts or policy recommendations. In view of both, the need to produce 

theoretically consistent models and the empirical difficulties in implementation, Diewert 

and Wales 1987 observed: One of the most vexing problems applied economists have 

encountered is that theoretical curvature conditions that are implied by economic theory 

are frequently not satisfied by the estimated cost, profit or indirect utility function. 

This paper investigates estimators that might be able to close this wedge 

between the empirical model and the underlying economic theory. We extend and 

improve upon currently available estimation methods for maintaining shape conditions 

by imposing restrictions on a connected subset of the domain associated with the 

function being estimated.  

Our technique is illustrated by investigating elasticities for the US demand 

system of the manufacturing sector. We apply a series of alternative shape imposing 

estimators. In comparison to these, it is shown that our technique maintains the 

flexibility property to the greatest possible extent, improves the goodness of fit measures 
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and it is computationally faster. With this method we successfully produce an empirical 

demand system that is entirely consistent with the underlying economic theory. As a 

demonstration of its empirical relevance, we produce various sets of elasticity estimates 

and their respective distributions and interpret differences in the light of the new 

methodological advances.  

Finally we motivate a testing procedure that checks the plausibility of the assumed 

economic theory. We show that standard econometric applications could erroneously 

reject the hypothesis that the observed U.S. input data emerge from a true data generation 

process consistent with duality theory. Instead using a regional regular estimate 

overwhelmingly supports the assumption that the KLEM data can be modelled within a 

system for which all regularity conditions hold.  

The benefits of the technique described in this paper can be extended to other 

areas of economics. For example the method could be applied to the estimation of 

producer supply or consumer demand systems, which also underlie multiple shape 

conditions implied by economic theory. Equivalently many functional relations in game 

theoretic models exhibit curvature, quasi-convexity or monotonicity restrictions. Also, it 

would also be interesting to compare these estimation results with the currently 

developing new techniques in nonparametric estimation that attempt to impose shape 

restrictions. This is to be explored in future research. We hope that the methods 

demonstrated in this paper promote tractability and facilitate the analysis of empirical 

models for which consistency with an underlying economic theory is required.  
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Chapter 4 

Daylight Time and Energy 
Evidence from an Australian Experiment  

 
I say it is impossible that so sensible a people…should have lived so long by the  

smoky, unwholesome, and enormously expensive light of candles, if they had really known,  
that they might have had as much pure light of the sun for nothing.   – Benjamin Franklin, 1784 –  

 
 

4.1 Introduction 

One principal socio-economic problem is the optimal allocation of individuals’ 

activities—sleep, work, and leisure—over the twenty-four hours of the day.  In today’s 

world of artificial lighting and heating, people set their active hours by the clock rather 

than by the natural cycle of dawn and dusk.  In one of the earliest statistical treatments 

in resource economics, An Economical Project, Benjamin Franklin (1784) criticizes 

this behavior because it wastes valuable sources of morning daylight and requires 

expensive candles to illuminate the nights. Franklin calculates that this misallocation 

causes Paris to consume an additional 64 million pounds of tallow and wax annually.  

Governments have also recognized this resource allocation problem, and have 

attempted to address it through the mechanism of Daylight Saving Time (DST).1  Each 

year we move our clocks forward by one hour in the spring, and adjust them back to 

Standard Time in the fall.  Thus, during the summer, the sun appears to set one hour 

later and the “extra” hour of evening daylight is presumed to cut electricity demand. 
                                                 
1 Historically, DST has been most actively implemented in times of energy scarcity. The first application of DST 
was in Germany during World War I. The U.S. observed year-round DST during World War II and implemented 
several substantial extensions during the energy crisis in the 1970s (Emergency Daylight Savings Time Energy 
Conservation Act, 1973).  Today, DST is observed in over seventy countries worldwide.  But DST is also heavily 
criticized for the inconveniences it creates on the days when the switch between DST and Standard Time occurs.  
For more information on the history of DST, see the recent books by Prerau (2005) and Downing (2005); 
Beauregard-Tellier (2005) provides an overview on the recent DST-energy literature. 
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Today, heightened concerns regarding energy prices and the externalities of 

fossil fuels are driving renewed interest in implementing DST in many countries.2 The 

United States recently passed legislation to extend DST by one month with the 

specific goal of reducing electricity consumption by 1% during the extension (Energy 

Policy Act, 2005).  Beginning in 2007, the U.S. will switch to DST in March rather 

than in April.  California is considering even more drastic changes—year-round DST 

and double DST—that are predicted to save up to one billion U.S. dollars annually 

(Joint Senate Resolution, 2001).  

Our study challenges the DST-energy literature findings that have been 

directly used to justify these calls for the expansion of DST.  Across the studies we 

surveyed, estimates of an extension’s effect on electricity demand range from 0.6% to 

3.5%.  The most widely cited savings estimate of 1% is based on an examination of a 

U.S. extension to DST that occurred in response to the Arab oil embargo (DOT, 

1975).  Due to the age of this study, it is possible that its findings are no longer 

applicable today—for example, because the widespread adoption of air conditioning 

has altered intraday patterns of electricity consumption. 

One primary method for predicting the effects of DST on electricity use is to 

employ simulation models, such as the 2001 study by the California Energy 

Commission (CEC) that is being used to promote year-round DST in California.3  It 

                                                 
2 Non-U.S. regions currently considering extending DST are Japan, Canada, New Zealand, and Australia with cited 
electricity savings of 2.2%-3.5%. The purpose for the extension plans differ by country and range from cutting 
greenhouse gas emissions by 440,000 tons of CO2  in Japan to conserving water resources used in New Zealand to 
generate hydropower. For details see ECCJ (2006), Young (2005), Eckhoff (2001) and Hansard (2005). 
3 Until today, the DST system proposed in California’s Joint Senate Resolution (2001) has not been implemented. 
“Congress and the White House did not act on the request because of the world-changing events of September 11, 
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predicts three benefits: (1) a 0.6% reduction in electricity consumption, (2) lower 

electricity prices, driven by a reduction in peak demand, and (3) a lower likelihood of 

rolling blackouts.  However, this study is not based on firm empirical evidence, 

instead it uses electricity market data under the current DST scheme to simulate 

demand under extended DST.  It may therefore fail to capture the full behavioral 

response to a change in DST timing.4 

An alternative approach is to examine electricity consumption a week before 

and a week after currently existing springtime changes. The set of studies taking this 

approach forecast larger drops in electricity use: from 2.2% in Ontario, Canada 

(Young, 2005) up to 3.5% in New Zealand (Eckhoff, 2001).  However, the week after 

the springtime change has longer and warmer days which, even in the absence of DST, 

would change electricity consumption, potentially biasing the studies’ results.  

In our study, we offer a new test of whether extending DST decreases energy 

consumption by evaluating a quasi-experiment that occurred in Australia in 2000.  

Typically, three of Australia’s six states observe DST beginning in October (which is 

seasonally-equivalent to April in the northern hemisphere).  However, to facilitate the 

2000 Olympics in Sydney, (located in New South Wales), two of these three states 

began DST two months earlier than usual.  Because the Olympics can directly affect 

the electricity demand we focus on Victoria—which did not host Olympic events—as 

the treated state, and use its neighbor state, South Australia, which did not extend 

                                                                                                                                             
2001” (Aldrich, 2006).  Subsequently, the federal Energy Policy Act has been considered more urgent, rather than 
changing DST state by state. 
4 We found one more study by Rock (1997).  Using a complex simulation model he finds that year-round DST 
decreases demand by 0.3% and electricity expenditures decrease by 0.2%.  However, the simulation does not 
include non-residential electricity use, which accounts for 74% of U.S. total electricity consumption (EIA, 2005).   
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DST, as a control. Furthermore by dropping the two week long Olympic period from 

the two month treatment period we remove confounding effects.  Using a detailed 

panel of half-hourly electricity consumption and prices, as well as the most detailed 

weather information available, we examine how the DST extension affected electricity 

demand in Victoria.  This experimental setting and rich dataset obviate the need to rely 

on simulations in our study.   

Our treatment effect estimation strategy is based on a difference in differences 

(DID) method that exploits, in both the treatment state and the control state, the 

difference in demand between the treatment year and the control years.  We augment 

the standard DID model in several innovative ways.  Most notably, we take advantage 

of the fact that DST does not affect electricity demand in the afternoon; we can 

therefore use changes in relative afternoon consumption to control for unobserved 

shocks that are not related to DST.  We show that this allows us to employ a much 

more relaxed identifying assumption compared to the standard DID setting.  

Our results show that the extension failed to conserve electricity.  The point 

estimates suggest that energy consumption increased rather than decreased, and that 

the within-day usage pattern changed substantially, leading to a high morning peak 

load.  The morning wholesale electricity prices therefore increased sharply. These 

results contradict the DST-benefits claimed in the prior literature. 

We further analyze whether the prior approaches to forecasting electricity 

demand could have predicted the outcomes of the Australian experiment. This is a 

relevant question for many countries that wish to evaluate the benefits of an extension. 
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We find that both the simulation model used in California and the “week before / week 

after” technique produce estimates that are biased in the direction of energy savings, 

which casts suspicion on the models’ previous policy recommendations.   

Finally, it should be noted that Australia—ranked highest in greenhouse gas 

(GHG) emissions per capita worldwide—is currently debating whether to permanently 

extend DST in a manner similar to that done in 2000 (Turton and Hamilton, 2001; 

Hansard, 2005).5  Our results indicate that the claims that extending DST in Australia 

will significantly decrease energy use and GHG emissions are at best overstated, and 

at worst carry the wrong sign. Also, while we cannot apply our results to other 

countries without adjustment for behavioral and climatic differences, this study raises 

concern that the U.S. is unlikely to see the expected energy conservation benefits from 

extending DST. 

The remainder of this paper is organized as follows: the next section provides a 

brief overview of the DST system in Australia and the changes that occurred in the 

year 2000.  After describing our dataset and presenting preliminary graphical results, 

section 4 discusses our exogeneity assumption and the treatment effect estimation 

strategy. Section 5 presents the empirical findings.  In section 6, we provide an 

overview of the two methods previously used to analyze the effects of extending DST 

on energy use.  Section 7 and 8 then discuss the application of these two methods to 

Australia.  We conclude by summarizing our main results and provide policy 

implications. 

                                                 
5 In Australia, 92% of the electricity produced relies on the burning of fossil fuels, which substantially contributes 
to the GHG emissions.   
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4.2 Background on Daylight Saving Time in Australia  

The geographical area of interest is the Australian continent’s eastern part, 

displayed in Figure 1.  Three states in the south east of the mainland observe DST—

South Australia (SA), New South Wales (NSW) and Victoria (VIC).  DST typically 

starts on the last Sunday in October and ends on the last Sunday in March. 

Queensland, the Northern Territory and Western Australia do not observe DST. Table 

1 provides summary statistics and geographical information for the capitals of these 

states, where the populations and electricity demand are concentrated.   

Figure 1: East Australia, states and major cities  

 

 

In 2000, NSW and VIC started DST two months earlier than usual—on 27 

August instead of 29 October—while SA maintained the usual DST schedule.  The 

extension was designed to facilitate the seventeen days of the Olympic Games that 

took place in Sydney, in the state of NSW, from 15 September to 1 October.  

Three rationales for the extension were put forward in 1991 when Sydney 

applied to the International Olympic Committee (Hansard, 1999a and 1999b). 

NSW, VIC, and SA in mainland 
Australia regularly begin DST on 
the last Sunday in October each 
year. In 2000, however, NSW 
and VIC began DST on 27 
August, whereas SA did not 
begin DST until 29 October. 
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(a) Many afternoon Olympic events ended near 17:30, and evening events began 

between 18:00 and 19:00.  Extended DST would allow the movements of visitors 

to and from stadia to take place in sunlight rather than twilight.  This was 

expected to improve the visitors’ well-being by providing higher temperatures, 

more daylight, and better security. 

Table 1: Geographic and population characteristics in east Australia 

State 
Capital State 

State 
Income/Capita 
in 1000 AUD 

City 
Population 
in millions  

State 
Population 
in millions  

Latitude 
South 

Longitude 
East Sunrise  Sunset 

Sydney  NSW 41.4 4.3 6.5 33°5' 151°1' 5:50  17:45 
Melbourne  VIC 39.3 3.7 4.8 37°47' 145°58' 6:20  18:10 
Adelaide  SA 33.4 1.1 1.5 34° 55' 138° 36' 6:50  18:35 

All estimates are of 2000. Sunrise and sunset hours refer to Eastern Australian Standard Time in the 
month of September. Additional astronomical data are detailed in Appendix A.  

(b) Extended DST would reduce on-field shadows on the playing fields that could 

hinder both athletes and television broadcasting quality.  

(c) Due to wind and weather conditions in September, rowing would need to start at 

7:30am under Standard Time.   DST permits rowing to start at 8:30am, to the 

benefit of spectators. 

Notably, none of the justifications for the DST extension were related to energy usage.  

A timeline of events is displayed in Figure 2.  The decision to start DST three 

weeks prior to the beginning of the Olympic Games was intended to avoid confusion 

for athletes, officials, media and broadcasters and other international visitors who 

would likely arrive prior to the opening of the games.  The opening of the Olympic 

village was scheduled for 3 September 2000.  VIC adopted the NSW timing proposal 

to avoid inconveniences for those living on the NSW-VIC border (see Figure C1 in 
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Appendix C).  However, SA did not extend DST in 2000 due to the opposition of the 

rural population (Hansard 1999a, 1999b, 2005).  

Figure 2: Timeline of 2000 events in New South Wales, Victoria and South 
Australia 

 
 
 

 

 

 

 

Sydney Olympics 
in NSW 

time 
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Table 2: Summary statistics of data used from 1999 to 2001, 27 August to 27 October 

Abbreviations: MW = Megawatts; AUD/MWh = Australian Dollars per Megawatt-hour; mm = millimeters; hPa = Hectopascal; RH% = relative humidity %.  
Note that the maximum wholesale electricity price is capped at 5000 AUD/MWh from 1999-2000, and at 10,000 AUD/MWh in 2001.  The cap is designed to 
mitigate generator market power (NEMMCO, 2005). 
 

 

  Summary of all years, 8928 observations per state Summary by year, Olympic dates excluded 
State         1999  2000 2001 

  Variable  [unit] mean std min max mean  std mean std mean  std 
Demand  [MW] 5253.68 550.56 3777.31 6861.32 5153.71 526.74 5331.40 562.57 5403.20 570.17 
Price [AUD/MWh] 27.36 97.20 -305.78 4527.21 19.72 6.37 45.09 187.72 29.55 88.02 
Temperature  [Celsius] 12.88 4.26 2.15 27.30 13.61 4.56 11.75 3.71 12.24 3.84 
Precipitation  [mm/hour] 0.08 0.48 0.00 15.40 0.07 0.52 0.15 0.76 0.04 0.24 
Wind  [meter/sec] 5.11 3.09 0.00 18.75 4.84 2.99 5.47 2.82 4.88 2.70 
Pressure  [hPa] 1015.23 7.61 990.30 1031.95 1017.81 6.40 1011.44 7.21 1011.93 6.33 
Sunshine  [hours/day] 6.29 3.65 0.00 12.20 6.76 3.85 5.81 3.61 5.72 3.57 
Humidity  [RH%] 71.00 17.18 19.00 101.50 70.38 16.73 73.36 15.65 71.70 17.55 
Employment [in 1000] 2254.21 43.67 2154.81 2303.30 2192.68 14.71 2271.98 12.53 2289.37 11.92 
Non-Working Day [% of days] 0.44 0.50 0.00 1.00 0.29 0.46 0.29 0.46 0.27 0.44 
School-Vacation [% of days] 0.16 0.37 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 

V
ic

to
ria

 

Holiday [% of days] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Demand  [MW] 1368.48 196.92 909.87 1954.26 1339.32 179.99 1397.31 202.81 1424.02 203.35 
Price [AUD/MWh] 41.06 120.75 3.50 5000 55.66 167.16 52.57 168.27 27.69 18.63 
Temperature  [Celsius] 14.91 4.24 4.05 31.60 15.76 4.87 14.08 3.20 13.66 3.25 
Precipitation  [mm/hour] 0.07 0.38 0.00 7.60 0.00 0.00 0.13 0.56 0.12 0.48 
Wind  [meter/sec] 4.54 2.76 0.00 17.00 4.28 2.58 5.23 2.87 4.69 2.78 
Pressure  [hPa] 1016.21 6.91 989.95 1030.80 1017.81 6.73 1014.18 7.01 1013.41 6.45 
Sunshine  [hours/day] 7.39 3.44 0.00 12.40 8.52 3.10 7.22 3.43 6.48 3.41 
Humidity  [RH%] 66.40 18.41 9.00 98.00 62.73 19.24 69.06 16.45 70.00 17.38 
Employment [in 1000] 679.28 7.33 662.94 687.75 668.83 2.80 684.35 2.50 682.81 2.42 
Non-Working Day [% of days] 0.45 0.50 0.00 1.00 0.34 0.47 0.29 0.46 0.39 0.49 
School-Vacation [% of days] 0.16 0.37 0.00 1.00 0.05 0.22 0.00 0.00 0.12 0.33 

S
ou

th
 A

us
tra

lia
 

Holiday [% of days] 0.02 0.12 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 

86 
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4.3 The Australian data and graphical results  

4.3.1 Data  

Electricity consumption and price data are obtained from Australia’s National 

Electricity Market Management Company Limited (NEMMCO).  These consist of 

half-hourly electricity demand and prices by state from 13 December, 1998 to 31 

December, 2005.  

Because electricity demand is heavily influenced by local weather conditions, 

we use two datasets from the Bureau of Meteorology at the Australian National 

Climate Centre. The first consists of hourly weather station observations in Sydney, 

Melbourne, and Adelaide—the 3 cities that primarily drive electricity demand in each 

state. The data cover 1 January, 1999 to 31 December, 2005 and include temperature, 

wind speed, air pressure, humidity and precipitation. The second dataset consists of 

daily weather observations, including the total number of sunshine hours per day. 

We also collected information regarding state-specific holidays and public 

school vacations to control for their effect on electricity usage.  We identify “transition 

vacation days” as working days sandwiched between a holiday and a weekend.  For 

example, the Melbourne Cup in Victoria is on the first Tuesday of November each 

year.  Because many employees take an extended weekend vacation, we model the 

Monday as a transition vacation day.  

Table 2 provides summary statistics for each of these variables by state in the 

period during the DST extension, end of August to end of October, as well as for the 

treatment period in 2000 and the adjacent years 1999 and 2001.  Displayed are the 
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mean, standard deviations (std), minimum (min) and maximum (max).  More details 

on the entire dataset as well as on our procedures for dealing with missing data are 

provided in Appendix B. 

4.3.2 The impact of the DST extension on electricity consumption and prices 

The goal of the empirical analysis is to examine the effect of the extension of 

DST on electricity use and prices. Before presenting the econometric model, the main 

intuition can be obtained by the graphical analysis presented in Figure 3.  Panel (a) 

displays the average half-hourly electricity demand in Megawatts (MW) in the control 

state of SA during the treatment period6, in 1999, 2000, and 2001, and the panel (b) 

shows the same for VIC.  SA’s load shape is very stable over these three years, 

featuring an increase in consumption between 05:00 and 10:00, a peak load between 

18:00 and 21:00, and then a decrease until about 04:00 on the following morning.  In 

particular, SA’s demand in 2000 appears unaffected by the DST extension in its 

neighbors VIC and NSW.7 

In VIC, however, the 2000 load shape is quite different from the loads in 1999 

and 2001—the treatment dampens evening consumption, but leads to higher morning 

peak demand.  This behavior is consistent with the expected effects of DST’s one-hour 

time shift: less lighting and heating are required in the evening, and more in the 

                                                 
6 The treatment period covers 27 August, 4am to 27 October, excluding 15 September to 2 October. This 
corresponds to the extension period in 2000, less the 17 days of the Olympic games.  
7 Hamermesh et al. (2006) examine spatial coordination externalities triggered by time cues. Their results imply 
that SA in 2000 may have adjusted its behavior in response to the treatment in VIC.  In particular, their model 
predicts that people in SA would awaken earlier in the morning to benefit from aligning their activities with their 
neighbors in VIC.  However, the effects that Hamermesh et al. calculate are small, and Panel (a) of Figure 3 does 
not show evidence of such a time shift.  
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morning—particularly from 07:00 to 08:00—driven by reduced sunlight and lower 

temperatures.  During the treatment period, the latest sunrise in Melbourne (on 27 

August) occurs at 07:51, and the average sunrise occurs at 06:55.  Further, the 07:00 to 

08:00 interval is the coldest hour of the day; the average temperature for this hour is 

only 9oC.  The one-hour clock time shift imposed by DST causes people to awaken in 

cold, low light conditions.  This causes an increase in electricity demand that persists 

even one hour after sunrise.  

Figure 3: “September and October” average half hourly electricity demand in  
South Australia (control) and Victoria (treated in 2000)8 

 
 
 
 
 
 

 

 
    

                      

 

                   (a) South Australia (control)              (b) Victoria (treated in 2000) 

Panel (b) also casts doubt on the claims that extended DST brings additional 

benefits in the form of higher system reliability due to a more balanced load shape (for 

a discussion on these benefits see CEC, 2001).  While the extension does reduce the 

evening peak load in VIC in 2000, it creates a new, sharp peak in the morning.  This 

                                                 
8 The “zig-zag” pattern that occurs between 11pm and 2am in both states is due to centralized off-peak water 
heating that is activated by automatic timers (Outhred, 2006).  The yearly increases in electricity demand can be 
attributed to population growth (2% in VIC and 1% in SA) and state specific economic conditions—the real gross 
state income per capita grew by 3% and 5% in VIC and SA respectively.  Despite these level shifts, the load 
patterns are remarkably similar for the control years. 
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2000 morning peak is even higher than the evening peak in 2001, and its sharp 

increase and decrease around 07:00-8:00 are steeper than those for any peak period 

found elsewhere in our data set.   

Figure 4: “September and October” average half hourly electricity prices and 
demand in Victoria (treated state in 2000) 

 
 
 
 
 
 
 
 
 
 
 
 

 

Our preliminary analysis also casts doubt on the claims that extending DST 

brings additional benefits in the form of reduced electricity prices. 9  As shown in 

Figure 4, the new morning peak in demand is coincident with a large spike in 

wholesale prices.  Morning price spikes occurred on every working day during the 

first two weeks of the extension, suggesting that the generation system was initially 

stressed to cope with the steep ramp in demand.   

                                                 
9 The fixed costs of electricity generation are largely determined by the peak load.  Econometric studies suggest 
that higher peak loads, relative to the average load, increase average costs significantly (e.g. Filippini and Wild, 
2000).  The intuition for this is that when the load shape is flat, supply can be generated by coal-fired base-load 
generators with low variable costs.  Volatile load shapes, however, require natural gas and oil-fired generators 
which can quickly ramp up or down, but have higher variable costs.  Characteristics of the different generators used 
in Australia, their warm up times, supply costs, environmental impacts and the market mechanism to determine the 
wholesale prices of Figure 4 are further detailed in Appendix C.  
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The answer to the central question of whether the evening decrease outweighs the 

morning increase, or vice-versa, is, however, not clear from this cursory analysis since 

it does not account for important determinants, such as economic conditions, school 

vacations, weather and other factors that change over time. To obtain the 

unconfounded effect of the treatment, we employ regression analysis, as described in 

the following sections.  The variables used to undertake this are displayed in Table 2.  

 

4.4 Empirical Strategy for measuring the effect of DST on electricity use 

The following two subsections describe our empirical strategy to identify (4.1) 

and quantitatively measure (4.2) the effect of extending DST on electricity use.  

4.4.1 Identification  

For the purpose of estimating the effect of the DST policy on energy use, a 

fundamental difficulty is that one cannot simultaneously observe both, how a state 

consumes energy under DST (the treatment) and how this state would behave in the 

absence of the treatment (the counterfactual). The optimal experiment would be to 

randomly allocate different timing schemes across states.  While such an experiment 

cannot be observed, we believe that the DST modification that occurred in Australia in 

2000 comes close.  In this case we directly benefit from observations during the 

treatment period and the control period in both the treated and the non-treated state.   

While we noted that the DST extension was implemented solely for 

operational purposes, and that we are not aware of any energy-based justifications, 

there may still be reasons to suspect that electricity consumption may have changed 
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significantly even absent a DST extension.  The 2000 Games were the most heavily 

visited Olympics event in history, school vacations were rescheduled to facilitate 

participation in carnival events, and the Games were watched on public mega screens 

and private TVs by millions of Australians in Sydney and elsewhere.  

Our identification strategy incorporates several features designed to account 

for these potential confounders.  First, we exclude the seventeen days of the Olympic 

period from the definition of the treatment period—this allows us to avoid many of the 

biases noted above.  Second, even with the Olympics excluded from the treatment, 

electricity demand may have been affected before and after the games—for example 

by pre-Olympic construction activities and by extended tourism.  To control for these, 

we ignore NSW (where the Olympics took place), and focus on the change in 

electricity demand in VIC relative to that in SA.  This technique eliminates the impact 

of any confounders that operate on a national level.10 

To control for unobservables that may have affected VIC and SA 

differentially, we use relative demand in the afternoon as an additional control.  That 

is, because DST does not affect demand in the middle of the day, variations in demand 

levels that are not explained by observables such as weather can be attributed to non-

DST-related confounders.  With that, our model is robust against any “level shocks” 

affecting the level of the consumption in any state at any day d, but do not affect the 

shape of the half-hourly load pattern at date d. We verify the assumption that DST 

                                                 
10 To further analyze whether visitors before and after the Olympic Games spent extended vacations in 

VIC or SA, we collected tourism information.  These data clearly show that while NSW was affected by tourism in 
September, VIC and SA were unaffected.  Details on the tourism data are provided in Appendix D. 
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does not affect afternoon demand by examining time changes in non-treatment years, 

as described in appendix E. 

These three features of our model imply that a mild identifying assumption 

guarantees that our regressions produce an unbiased estimate of the extension’s effect.  

We assume that, conditional on the observables and in the absence of the treatment, 

the ratio of VIC demand to SA demand in 2000 would have exhibited the same half-

hourly pattern (but not necessarily the same level) as observed in other years.  Strong 

support for this is found by plotting the ratio of consumption in VIC to that in SA for 

1999-2005, as shown in Figure 5.  The demand ratio exhibits a regular pattern in all 

non-treated years, even without controlling for observables.  The figure also illustrates 

the large intra-day shift in consumption that occurred in VIC in 2000, in response to 

the DST extension. 

Figure 5: Demand ratio between VIC (treated) and SA (control) averaged 
between 27 August and 27 October  
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Moreover, the level of the log ratio is unsystematically changing from smallest 

to largest over the years 2002, 2000, 2001, 1999, 2004, 2003, to 2005.  This is 

consistent with the premise that level shocks, which we control for, affect one or the 

other state temporarily only.  Finally, the decrease in evening demand in VIC in 2000 

and the increase in the morning are clearly visible, being consistent with the analysis 

of section 3. 

4.4.2 Treatment effect model 
Our specification of the treatment effect model is primarily drawn from the 

difference-in-differences (DID) literature (Meyer 1995 and Bertrand et al., 2004).  We 

augment the standard DID model by estimating a “triple-DID” specification because, 

as outlined in section 4.1, our control structure is three-fold: 

(a) cross-sectional over states (using VIC as the treated state and SA as the control)  

(b) temporal over years (using the untreated years in SA and VIC as controls) 

(c) temporal within days (using afternoon hours as “within-day” controls)  

Our linear specification is 

                                  ln( ) - ln( )idh id idh h idh h idh h idhq q T X Wβ α φ ε= + + +                            (1) 

The dependent variable for each observation is the difference in logs between 

demand, q, in state i in day d in half-hour h, and q , the average electricity demand 

between 12:00-14:30 in the same state and day, whereby i ∈ {VIC, SA}, 

d = {1,2,…,186}, and h = {1,2,…,48}.  The reference case model uses data from VIC 

and SA during 27 August to 27 October in 1999, 2000, and 2001; that corresponds to 
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the time period of the DST extension in 2000, while in the years 1999 and 2001 during 

this period Standard Time is observed. 

The covariates of primary interest are the indicator variables Tidh for the 

treatment period, unpooled by half-hour and active from 27 August to 14 September, 

2000 and from 2 October to 28 October, 2000, thereby excluding the Olympic Games 

from the treatment. 

Dummy variables Xidh include 48 half-hour dummies, and interactions of these 

dummies with indicator variables for the following: state, year, day of week, holidays, 

school vacations, transition days, the interaction of state with week of year, and the 

interaction of state with a flag for the Olympic period.  The weather variables Widh are 

also interacted with half-hour dummies11 and include a quadratic in hourly heating 

degrees,12 daily sunlight hours, the interaction of sunlight with temperature, hourly 

precipitation, the interaction of precipitation with temperature, and the average of the 

afternoon heating degrees.  All weather variables enter the model lagged by one hour.  

In equation (1) the treatment effect parameters to be estimated are given by βh.  

The percentage change in electricity demand caused by the DST extension is given by  

                                                 
11 Our final specification pools some hours to improve efficiency of the weather models.  Doing so has no impact 
on the reported results on the treatment effects. In total, this specification has 48 treatment effects, 1019 fixed 
effects, 288 variables characterizing different days of the week, 144 variables to account for school-vacations, 
holidays, and transition days, 222 weather related variables and 96 indicators to dummy out the Olympic period.  
12 Heating degrees are calculated as the difference between the observed temperature and 18.33o Celsius (65o 
Fahrenheit). The motivation of squaring the heating degree is that as the temperature deviates from 18.33, cooling 
or heating efforts increase nonlinearly.  This functional form is consistent with other electricity demand models in 
the literature (see Bushnell and Mansur 2005).   
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exp(βh )-1.13  The main parameter of interest, however, is the percentage change in 

demand aggregated over all 48 half-hours, given by 

    

48

=1
48

=1

exp( )ω
θ  =  - 1.

ω

h h
h

h
h

β∑

∑
                                                 (2) 

That is, θ is calculated as the weighted sum of the half-hourly percentage effects, 

where the weights ωh are the average of the baseline 1999 and 2001 half-hourly 

demands during 27 August to 27 October, exclusive of the Olympic dates.  

Our objective is to obtain the mean and other statistics of interest of the 

probability density function of the estimate θ̂ , denoted ˆ(θ)g .  Because θ̂  is the 

weighted sum of non-iid lognormal variables, this distribution does not have a closed 

form solution and must be estimated numerically.14  

To do so, we first develop a covariance estimator for γ = β  α  φT T T Tˆˆ ˆ ˆ[ ] , which in 

turn relies on the covariance structure of the disturbance ε = Y-Zγ.  We allow ε to be 

both heteroskedastic and clustered on a daily level,  

E(εidhεidh|Z) = 2
idhσ ,      E(εdjεdk|Z) = ρdj ∀ j≠k,      ' |( )Tε ε =d dE Z 0  ∀ d≠d′.  

The motivation for selecting this block-diagonal structure is that it accounts for 

autocorrelation as well as for common shocks that affect both states 

                                                 
13 To derive exp(βh), we make use of the afternoon assumption that E[ idq |Tid=1] / E[ idq |Tid=0] = 1.  
14 Dependence between the estimates of the neighboring half-hours, β̂h  and 1β̂ −h theoretically can lead to an a-
typical shaped distribution g (see e.g. Vanduffel, 2005 for a recent treatment).  Dependence structures vary by 
different covariance estimators. This is further illustrated in Appendix E.  
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contemporaneously. The clustered sample covariance matrix estimator is therefore 

used for γ (Wooldridge, 2003; Bertrand et al., 2004).  

As an alternative to the clustered disturbance structure, we also estimate the 

model using the Newey and West (1987) estimator with 50 lags.15  To adapt this 

estimator to our panel data, we block-diagonally partition the covariance matrix of ε 

into six groups (the three years by two states) and do not permit the lag structure to 

overlap across groups.   For each block Ωj, j=1,..,6, we assume the same covariance so 

that Ωj = Ω.  

With an estimate of the covariance of β̂  in hand, we numerically estimate the 

probability distribution ˆ(θ)g  by taking 100,000 draws from the distribution 

N( β̂ ,Cov( β̂ )), and calculating θ̂  by (1) for each draw.  It turns out that this numerical 

estimation produces a distribution ˆˆ (θ | )g Z 16 that is indistinguishable from a normal 

distribution with a mean given by the empirical analogue of (2), 

    

48

=1
48

=1

ˆexp( )ω
θ̂  =  - 1

ω

β∑

∑

h h
h

h
h

,                                                 (3) 

and a variance θ̂  calculated by the delta method,   

    V( θ̂ ) = ∇βθ( β̂ )TCov( β̂ )∇βθ( β̂ ),                                 (4) 
                                                 
15 50 lags allow the errors to be correlated over slightly more than one full day.  Tests of AR(p) models on ε 
suggest that the disturbances are correlated over the first six hours of lags, but not beyond that.  However, the 
coefficient on the 48th lag is significant.  Also, note that the triple DID specification considerably decreases the 
autocorrelation properties of the dependent variable, relative to a standard DID.  See Bertrand et al., 2003 for a 
discussion of the problems of autocorrelation and DID models.  
16 Appendix E compares the numerical with the analytical approximation methods.  The ‘hat’ on g indicates that 
this distribution is itself estimated using the numerical approximation.  Strictly speaking, we estimate the posterior 
of θ̂  that is conditional on Z.  
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with ∇βθ as the (48 x 1) gradient vector of θ(⋅) evaluated at β̂ .  We therefore report θ̂  

and V( θ̂ ) as estimated by (3) and (4), rather than as the mean and variance of ˆ(θ)g  

and we can directly approximate any further statistic used in the below hypothesis 

tests as a Student’s t distribution, which leads to the same results as if one were 

bootstrapping throughout. 

 

4.5 Results  

4.5.1 Reference case results  

The primary goal of the empirical analysis is to examine the effect of the two-

month extension of DST on electricity consumption.  Figure 6 displays the estimated 

percentage impact of the DST extension on electricity demand in each half hour; these 

are the point estimates given by ˆexp( ) 1hβ − . Extending DST affects electricity 

consumption in a manner consistent with the preliminary graphical analysis: there is a 

transfer in consumption from the evening to the morning.  This behavior agrees with 

the expected effects of DST’s one-hour time shift.  Less lighting and heating are 

required in the evening; however, demand increases in the morning—particularly from 

07:00 to 08:00—driven by reduced sunlight and lower temperatures.  
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Figure 6: Half hourly treatment effects of extending DST on electricity use 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To assess whether the evening decrease in demand outweighs the morning 

increase, we aggregate the half-hourly estimates using (3) to yield an estimate of θ. 

We find that the extension of DST failed to conserve electricity.  The point estimate of 

the percentage change in demand over the entire treatment period is +0.11% with a 

clustered standard error of 0.39.17  

                                                 
17 In DID panel settings, Bertrand et al. caution that results are sensitive with respect the chosen standard errors. 
Our results very clearly confirm such bias. In our case, assuming homoskedasticity would result in a standard error 
of θ̂  of 0.08. Instead applying the Newey-West covariance estimator results in a standard error of 0.32. Although 
the Newey-West correction in large sample sizes promises a good approximation, here we chose to report our main 
results using the more conservative clustered standard errors (0.39). For a discussion on the comparison between 
the latter two approaches, see Petersen, 2006.  
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Table 3: Summary of percentage change treatment effects 

 All days “September” “October” Weekdays  Weekends  

% change  0.11 0.34 -0.06 0.44 -1.94 

standard error (0.39) [0.32] (0.43) [0.34] (0.43) [0.36] (0.40) [0.33] (0.41) [0.40] 

Clustered standard errors are in parentheses and Newey-West standard errors are in brackets.  

We also examine the impact of the DST extension separately for the 

“September” period and the “October” period.18  Because September in the southern 

hemisphere is seasonally equivalent to March in the northern hemisphere, this 

examination has policy implications—recent efforts to extend DST in the U.S., 

California, and Canada concern an extension into March, as DST is already observed 

in April in these locations.  Prior studies suggest that such an extension creates 

electricity savings of 1% (U.S.), 0.6% (California), and 2.2% (Ontario, Canada).  By 

contrast, our estimate shows that the extension of DST into September in Australia 

increased electricity demand by 0.34%.19  This result raises a concern that extending 

DST in North America will fail to yield the anticipated electricity savings.  

To formally compare our estimates to the previous literature, we define four 

null hypotheses, H0:, (1) θ = 2.2%, (2) θ = 1.0%, (3) θ = 0.6%, and (4) θ = 0.0%.  In 

each case, the alternative, HA, is that the change in electricity demand is greater than 

the cited value.  Table 4 displays p-values for rejection of each null hypothesis, given 

both our overall estimate and our unpooled estimate.  Even with conservative clustered 

standard errors, we reject at the 5% level the most modest estimate of the prior 

                                                 
18 “September” covers the time period from 27 August, 4am to 14 September, and “October” covers 2 October to 
27 October—these dates correspond to the treatment period in 2000: the extension period excluding the 17 days of 
the Olympic games. 
19 The point estimate in “October” is that the extension conserves electricity by 0.06%.  While the difference 
between the “September” and “October” estimates is significant at only the 30% level, the sign of the difference is 
intuitive: in “October” there is more morning sunlight and temperatures are warmer, so the morning increase in 
demand is mitigated. 
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literature—a 0.6% reduction in electricity use in September.  Over the entire treatment 

period, we reject a 1% reduction in demand at the 1% level, and reject a 0.6% 

reduction at a 10% level.  These rejections are strengthened with the use of Newey-

West standard errors. 

All told, our results indicate that claims that extending DST will significantly 

decrease energy use and GHG emissions are at best overstated, and at worst carry the 

wrong sign.  In particular, a long, two-month, extension is more likely than not to 

increase electricity consumption.  

Table 4: p-values of testing the energy saving hypotheses  

  “September” 
( θ̂  =+0.34%) 

“September” and “October” 
( θ̂  =+0.11%) 

 Null 
hypothesis     Cluster     Cluster 

Newey-
West     “OLS” 

-2.2%m 0.000*** 0.000*** 0.000*** 0.000*** 

-1%m 0.003*** 0.007*** 0.001*** 0.000*** Electricity 
Savings 

-0.6%m 0.037*** 0.075*** 0.033*** 0.000*** 

Electricity 
Neutrality 0.0%m 0.292*** 0.384*** 0.375*** 0.135*** 

*** rejected at p = 0.01, ** rejected at p = 0.05, * rejected at p = 0.1 

4.5.2 Robustness 

Our results are robust to many alternative specifications.  The use of time 

trends rather than weekly dummies does not affect the results, nor do alternative 

weather specifications.  In particular, our results are invariant to the choice between a 

weather model taken from Bushnell and Mansur (2005) and one from CEC (2001) 

(described in detail in section 7).  Further, our results do not change if we include 



 102

years and months of data beyond what we use in our reference case.  This robustness 

is underlined by the precise fit of our model—the adjusted R2 is greater than 0.94. 

Regression equation (1) contains over 1800 parameters.  While the point 

estimates and the standard errors for the parameters of primary interest—the treatment 

effect—are discussed above, most of the other coefficients are significant and carry 

signs that agree with intuition.  For example, weekends, holidays, and vacations lower 

electricity consumption at all hours of the day and particularly in the morning.  

Deviations from the base temperature of 18 degrees Celsius increase electricity 

consumption, consistent with the effects of air-conditioning (when above 18 degrees) 

and heating (when below 18 degrees).  

The weights ωh used to calculate θ̂  are based on the average of the 1999 and 

2001 half-hourly demands.  As an alternative set of weights, we also use the estimated 

half-hourly counterfactual demand in 2000, given by exp{XVICdhαVICdh + 

WVICdhφih}⋅ VICdq .  Doing so does not affect our estimate of θ̂ . 

To verify the robustness of our unpooled result, we modify the pooled 

specification to include the interaction of the treatment dummies with a daily time 

trend.  That is, we add the term β⋅ ⋅ t
idh hTt  to regression specification (1) for each half-

hour h = 1,…,48, where t denotes the day of the year.  Figure 7 displays the estimated 

treatment effect over the period 27 August to 27 October (calculated as θ(t) = 

[ {exp }β β+ ⋅Σ t

h hh t ⋅ωh/Σhωh)]-1).  Victoria marginally benefits from DST after 14 

October; however, DST increases energy use prior to this date.  This result agrees with 

our unpooled “September” and “October” treatment effects.  
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Figure 7: Optimal timing of DST 
 

 

 

 

 

 

 

 

 

 

 

 
 

As a final check of our estimates, we evaluate whether extending DST causes 

relatively greater reductions in electricity consumption on weekends and holidays than 

on working days.  This would be consistent with the intuition that, on non-working 

days, less early activity will mitigate the morning increase in demand.  We estimate 

that electricity consumption on working days increased by 0.4% during the extension, 

while consumption on weekends and holidays decreased by 0.9%.  This difference is 

significant at the 2% level. 
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4.6 Alternative methods to measure the effect of DST on electricity use 

In the remainder of the paper we examine two alternatives to measure the 

effect of DST on energy.  This is useful for at least two reasons: first, the Australian 

data provide us with the unique opportunity to evaluate the proposals to extend DST in 

the U.S., Canada, New Zealand and Australia (Energy Policy Act, 2005; Joint Senate 

Resolution, 2001; Young, 2005; Eckhoff, 2001; Hansard, 2005) as we can analyze the 

predictive power of the prior modeling approaches.  Second, the data provide a 

validation tool to examine the structure of the prior modeling methods of the DST 

literature, which can be categorized into two types: the “week before / week after” 

technique (Eckhoff, 2001; Young, 2005) and the simulation approach (Rock, 1997; 

CEC, 2001). 

The simulation approach uses data on hourly electricity consumption under the 

status quo DST timing policy to simulate consumption under a DST extension.  This 

procedure first employs a regression analysis to assess how electricity demand in each 

hour is affected by light and weather, and then uses the regression coefficients to 

predict demand in the event of a one-hour time shift lagging the weather and light 

variables appropriately.  The simulation results rely on the assumption that extending 

DST will not cause new patterns of activity than those observed in the status quo. This 

may not hold in practice.  For example, to simulate demand under extended DST at 

07:00, the model must rely on observed status quo behavior at 07:00 under cold and 

low-light conditions.  Without a DST extension, these conditions are observed only in 

mid-winter.  The simulation will be inaccurate if people awaken later in winter than 
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they do in spring under extended DST, perhaps because they rise earlier as they 

become accustomed to increasing morning light in the spring and continue this 

behavior even after the extension causes mornings to be dark again. 

With the Australian quasi-experiment, by contrast, we can estimate the 

treatment effect directly, based on the comparison of both regimes, the status quo and 

the treatment period (the period of the DST extension in 2000).  By re-estimating the 

simulation models based on the status quo observations and then forecasting the 

electricity demand under the treatment, we have a tool to evaluate the performance of 

this approach in detail.  

The “week before / week after” technique examines electricity use before and 

after the existing spring and fall time changes.  These studies confirm the conventional 

wisdom that DST saves energy.  However, an extension introduces DST to a time of 

year when the days are shorter and cooler than they are when the time shift usually 

occurs.  Secondly, the first week of DST has longer and warmer days than the week 

prior to the springtime change.  Therefore, these studies likely overestimate the energy 

savings of an extension. 

We first show that both methods significantly overstate electricity savings. We 

then try to understand why these biases arise.  We find that by carefully modifying the 

sample selection, the simulation models’ aggregate predictive power improves; 

however, they still fail to accurately predict the intraday changes in demand.  For the 

“week before / week after technique”, we show that by controlling for differences in 
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weather reduces the bias, but the variance of the estimates remains high. Overall, these 

results cast suspicion on the models’ previous policy applications. 

 

4.7 Evaluation of the Simulation Approach  

A natural question to ask is whether or not the simulation approach would have 

predicted the DST effects sufficiently well.  To test the simulation approach, we 

employ the most recent model developed by CEC, 2001, which has been used in the 

U.S. to argue in favor of a year-round DST extension in California.  The first stage of 

the model is a regression of hourly electricity demand, qdh, on employment, weather, 

and sunlight variables: 

+ Employment  + Weather + Light +sim
dh h h dh h dh h dh dhq a b c d u=  

The disturbance ud is correlated across the h = 1,…,24 hourly equations, per the 

Seemingly Unrelated Regression method (Zellner, 1962).  The regression allows the 

weather and light coefficients to vary across the twenty-four hours of the day, and the 

weather specifications are very detailed. For example, the temperature variables are 

separated into hot, cold, and warm days, because a hot hour which follows other hot 

hours will have higher electricity demand than a hot hour which follows cool hours 

(because buildings retain heat).20  Once the vector of regression coefficients is 

                                                 
20 For each half hour the weather and light regressors consist of temperature variables by (1) a one-hour weighted 
average of its quadratic and cubic, where the weights are .45 times the temperature in the hour that includes the last 
half-hour of an electricity use hour, .45 times the temperature in the hour that includes the first half-hour of an 
electricity use hour, and .10 times the previous hour; and (2) a three day weighted average of the temperature 
separately for hot spells, warm spells and cold spells, with 60% weight on average temperature one day lagged, 
30% on 2 days lagged, and 10% on 3 days lagged.  Hot, warm and cold are defined by the temperature cut-off 
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estimated, they are used in the second stage to forecast electricity consumption under a 

DST extension.  This is accomplished by lagging the weather and lighting variables by 

one hour and adding the first stage realized error term to project   

1 1
ˆ ˆˆ ˆ ˆ ˆ+ Employment  + Weather + Light + { , 1,..., }sim

dh h h dh h dh h dh dhq a b c d u d D D D− −= ∀ ∈ +  

for the days d= ,...,D D  for which a DST extension is being considered. 

 Figure 8 displays observed electricity demand in California during March 

1998-2000 when Standard Time was in effect, as well as the simulated demand for 

extended DST.  Recall that March in California is equivalent to September in 

Australia.  The simulation predicts that under DST electricity consumption will be 

significantly lower in the evening, between 17:00 and 19:00, leading to an overall 

0.6% decrease in electricity use for the month of March.   

                                                                                                                                             
values 21.11oC and 10.00oC.  Humidity, precipitation, barometric pressure, wind speed, visibility, and cloud cover 
also enter the weather specification. The lighting variables are the percentage of the hour in daylight throughout 
California and the percentage in twilight.  The light variables are included only for those hours in which light 
conditions vary over the year, under either standard time or DST.  Details on the definition on these variables, the 
estimation of the model and simulation are explained in CEC, 2001. 
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Figure 8: If DST had been imposed in March 1998-2000 in California  

 

Source: CEC, 2001.Actual status quo demand is observed under Standard Time. The forecasted 
demand is simulated under the assumption that DST had been imposed. For California, the observed 
and simulated load shapes for a DST extension into January and February look similar. More details are 
provided in CEC, 2001. 

We apply the CEC model to the Australian data for the state of VIC, with a few 

changes to the specification.21  Figure 9 illustrates the simulated electricity demand 

under a DST extension in “September” and “October”.  The simulated load shapes in 

VIC very closely resemble those for the California simulation, and predict energy 

savings of 0.41% to 0.44%. 

Figure 10 compares the characteristics of actual demand under the VIC 

treatment with simulated consumption.  The figure shows that the simulation fails to 

predict a morning increase in electricity consumption similar to that observed in 2000, 

and also overestimates the evening savings.  The simulated decrease in consumption is 

                                                 
21 Instead of using 24 hourly equations, we take advantage of the more detailed Australian dataset and estimate the 
model with 48 half-hourly equations.  We also improve the explanatory power of the model by including six day-
of-week dummies and an indicator variable for vacations, holidays, and transition days.  Finally, the Australian 
weather data do not contain variables for visibility and cloud cover that were used in CEC, 2001.  Instead we use 
the number of hours of sunshine per day and the interaction of this variable with temperature.  Also, the humidity 
and precipitation variables are correlated with visibility.  In total the model applied to Australia has 1052 
parameters to be estimated (48 equations with 24 parameters each) based on the data from 1 January, 1999 to 31 
December, 2002, but excluding the treatment period in 2000. 
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inconsistent with what actually happened in VIC.  Based upon our triple DID estimate 

and clustered standard error presented earlier, we reject the -0.41% prediction of the 

simulation at a 5% significance level. 

Figure 9: Actual vs. forecasted VIC demand based on the CEC simulator  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Actual demand is observed under Standard Time. The forecasted demand is simulated under the 
assumption that DST had been imposed.  
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Figure 10: Actual and simulated electricity consumption in VIC over 
“September” in various years.  DST is in effect only during 2000 
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Average electricity consumption in VIC by half-hour in “September” in various years.  Solid lines 
represent observed consumption, and dashed lines represent simulations of what consumption would 
have been if DST were observed. 

The first row of Table 5 summarizes our simulation results. It is striking that 

for all the periods from 1999 to 2001, the estimates of energy savings fall in a narrow 

range from 0.41% to 0.45% and strongly reject our treatment effect estimate of section 

6.22  Table 5 further displays the test statistics for the comparison of the simulation 

results to a 0.6% reduction in energy use—the simulated prediction for California 

(CEC, 2001). Our simulations cannot reject savings of 0.6%, confirming the 

preliminary result that the VIC simulation is very similar to that for California..  As a 

                                                 
22 To perform the hypothesis tests we need to calculate the variance of the sum of simulated energy demand 

48
1= =Σ Σ simD

d D h dh
q . This is given by ∑i∑j[Xsim

TCov(β)Xsim]ij, that is as the sum of the elements of the matrix 
Xsim

TCov(β)Xsim, whereby Xsim
 is the block-diagonal “simulation” regressor matrix of dimension 

 48⋅( D - D ) x 1052 with each block h = 1,2,…,48 defined as columns of [1, Employmentdh, Weatherdh-2, Lightdh-2, 
Weekday1dh,…,Weekday6dh, Workdaydh,] and Cov(β) is the 1052 x 1052 estimated covariance matrix of β.  
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robustness check we repeat this exercise for the month of October (which is equivalent 

to the month of April in the northern hemisphere), leading to very similar results. 

Table 5: Simulating a DST extension using the CEC methodology  
Year 1999 2001 

Period September October September October 
“September” 

1999 
“September” 

2001 

%-change between 
DST and Standard 

Time 
-0.44 -0.44 -0.43 -0.41 -0.43 -0.41 

energy 
neutrality -2.02 -1.82 -1.42 -1.64 -1.81 -1.40 

t-v
al

ue
 w

ith
 

re
sp

ec
t t

o 
 

energy 
savings of 

0.6% 
0.72 0.64 0.54 0.53 0.73 0.65 

We attempted to understand the causes of the simulation’s misprediction. We 

found that, by shrinking the sample in the first stage regression, the predictive power 

can be increased considerably.23  We use a sample period in which sunset, sunrise, 

light and weather conditions are most similar to the simulated extension period in 

September.24  Table 6 displays the regression results from the revised simulation 

model—the results now show that the DST impacts are statistically indistinguishable 

from zero, which more closely corresponds to what actually happened in VIC.  Also, 

with this improved specification the prior electricity savings estimates of 0.6% and 1% 

in the U.S. are now rejected at the 10% significance level and lower.  However, when 

we analyze the refurbished model on a half-hourly basis we still find that it 

substantially under-predicts morning electricity demand between 07:00 and 09:00, and 
                                                 
23 The original simulation models’ parameters are estimated based on the status quo data from all twelve months of 
the year.  On the one hand, one might expect that this variation in weather improves the forty-eight weather models 
especially because they explicitly account for the nonlinearities and discontinuities by use of hot, warm and cold 
weather spells.  On the other hand, we show that significant improvements are made by being more selective.   
24 For example, to predict an extension into September, we suggest to limiting the sample size to the months from 
March to September and excluding the full month of July and the first half of August.  See the sunrise, sunset, 
weather table A1 in Appendix A for the more detailed motivation for choosing these periods. 
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over-estimates the evening demand.  These two mispredictions cancel one another, 

leading to the more accurately predicted overall effect.  We conclude that despite 

extensive adjustments this simulation model cannot predict the substantial intra-day 

shifts that occur due to the early adoption of DST.  

Table 6: Simulating a DST extension using the refurbished simulation model 
Year 1999 1999 2001 2001 

Period September “September” September “September” 

%-change between DST and 
Standard Time -0.005 -0.027 -0.026 -0.025 

energy neutrality 0.0% -0.02 -0.01 -0.06 -0.07 

energy savings 0.5% 1.75 1.6 1.210 1.24 

energy savings 0.6% 2.10 1.92 1.34 1.50 

t-v
al

ue
 w

ith
 re

sp
ec

t t
o 

 

energy savings 1% 3.51 3.19 2.27 2.54 
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Figure 11: Actual versus simulated VIC demand based on the refurbished 
simulator  
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4.8 Evaluation of the “week before / week after technique” 

Applying the “week before / week after technique” (WBAT), to VIC, as used 

in New Zealand and Canada, would lead to a prediction of electricity savings of 

1.77%.25  The point estimate is slightly lower than the savings predicted in Ontario 

(2.2%) and New Zealand (2.0%-3.5%), however, with a clustered standard error of 

1.60, the estimate is statistically insignificant.  Still, this correlation estimate is 

consistent with the intuition that in summertime the requirement for indoor electricity 

use decreases due to improved weather conditions.  Once we control for weather and 

day weekday/workday dummies, however, the point estimate on the DST coefficient 

increase to +1.11%.  Table 7 shows that varying the number of days before and after 

the springtime change causes the WBAT estimates to vary from -1.21% to -1.77% 

when weather variables are not included, and from 0.52% to 1.11%, when weather 

variables are included.  This variance is not surprising given the large standard errors.  

We believe that this lack of robustness makes this approach unsuitable for policy 

analysis in Australia. 

Table 7: Percentage change due to DST using the “week before / week after 
technique” 
 Days used before and after the springtime change 
 7 days 10 days 4 days 
 %-change s.e. %-change s.e. %-change s.e. 
WBAT -1.77 1.60 -1.34 1.29 -1.21 1.92 
WBAT conditional on weather 1.11 0.69 0.52 0.55 0.72 1.31 

Standard errors (std) based on clustered covariance matrix by date. The original WBAT approach 
employs data of one week before and one week after the springtime changes over the years from 1999 
to 2005, excluding the year 2000 (7 days column).  

 

                                                 
25 The WBAT approach used data one week prior to and one week after the springtime changes over the years from 
1999 to 2005, excluding the year 2000. 
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4.9 Summary and Conclusions  

Given the economic and environmental imperatives driving efforts to reduce 

energy consumption, policy-makers are considering extending Daylight Saving Time 

(DST).  Doing so is widely believed to reduce electricity use.26  Our research 

challenges this belief, as well as the studies underlying it.  We offer a new test of 

whether extending DST decreases energy consumption by evaluating an extension of 

DST that occurred in the state of Victoria, Australia in 2000.  Using half-hourly panel 

data on electricity consumption and a triple-difference treatment effect model, we 

show that, while extending DST does reduce electricity consumption in the evening, 

the increased demand in the morning cancels these benefits out.  We statistically reject 

electricity savings of 1% or greater at a 1% significance level. 

We also cannot confirm two additional DST extension benefits that have been 

discussed in California: a reduction in electricity prices and a reduction in the 

likelihood of blackouts driven by a more balanced hourly load shape.  We instead 

show that the Australian DST extension significantly increased expenditures on 

electricity and caused a sharp peak load in the morning.  

From an applied policy perspective, this study is of immediate interest for 

Australia, which is actively considering an extension to DST.  Moreover, the lessons 

from Australia may carry over to the U.S. and to California—Victoria’s latitude and 

                                                 
26 On signing the Energy Policy Act on 8 August, 2005, President Bush stated that it is primarily a “security bill” to 
become “less dependent on foreign sources of energy” (Bush, 2005).  The U.S. government emphasized this by 
expressing the estimated 1% electricity savings of extended DST as “to reduce energy consumption by the 
equivalent of 100,000 barrels of oil for each day of the extension” (CENR, 2005). 
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climate are similar to those of central California.27  In particular, the planned extension 

that will occur in the U.S. in 2007 will cause DST to be observed in March—a month 

that is analogous to September in Australia, when our point estimates suggest that 

DST will increase rather than decrease electricity consumption.  With this, our results 

run contrary to recent simulation-based studies and suggest that current proposals to 

extend DST may be misguided. 

To further investigate the relationship of our study to previous simulations, we 

re-estimate the simulation model that supported a DST extension in California, using 

Australian data.  We find that simulation models over-estimate energy savings casting 

suspicion on its previous policy applications in the U.S.  Similarly, we scrutinize the 

“week before / week after technique” which has been employed in Canada and New 

Zealand and find that this method also predicts savings that are too large.   

It should be noted that our estimates of energy use are likely represent a lower 

bound, as we account for electricity consumption only.  Considering gasoline demand 

as well may increase the estimate of DST’s effect on energy consumption, as longer 

and warmer evening hours drive an increase in evening leisure travel (Lawson, 2001).  

Finally, our study leaves scope for future work.  First, an ex-post evaluation of 

the pending U.S. DST extension will be a worthwhile enterprise.  Second, the non-

energy impacts of extending DST also require investigation—potential studies include 

                                                 
27 While we are not in a position to extend our results to any country, it is worth noting that there are several other 
major coastal cities around the world at approximately the same latitude as Melbourne (latitude 37.5 South)—for 
example, Buenos Aires (34.4) in the southern hemisphere and San Francisco (37.77), Washington D.C. (38.5) and 
Tokyo (35.4) in the northern hemisphere—locations within countries that are considering changes to their DST 
systems.  These countries may find our results helpful in order to assess potential costs and benefits of such 
measures. 
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impact analyses on crime, traffic accidents, and economic coordination, which could 

build upon prior work in these areas (Coren, 1996; Coate and Markowitz, 2004; 

Kamstra et al., 2000; Lambe and Cummings, 2000; Varughese and Allen, 2001; 

Hamermesh et al., 2006).  Such work will allow the research community to provide 

policy-makers with evidence to support informed decisions regarding the future status 

of DST 
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Appendices 

The appendix is divided into two subchapters. Appendix 1 has material that 

belongs to chapter 2 and Appendix 2 belongs to chapter 4.  

 

Appendix 1 

Appendix 1A: Proof of propositions outlined in table 1 and 
further explanations 

           Before we prove the cases outlined in table 1 we need to introduce two further 

set definitions. (1) For any given MCMC outcome b(*) ∈ Θ, the orthant of strictly 

positive prices π can always be partitioned into two disjoint subsets, πR|b(*) ∪ πIR|b(*) 

= π. We say that f(p;b(*)) is well behaved on the regular price set πR|b(*) = {p : i(p; 

b(*)) ≥ 0 ∀ p ∈ π}. (2) Since we are particularly interested in the behavior of the 

function within the set ψ, let us define ψR = ψR|b(*) = {p : i(p; b(*)) ≥ 0 ∀ p ∈ ψ} ⊂ 

πR|b(*). It has the following features: If f(p;b(*)) is regular ∀ p ∈ ψ, then ψR = ψ. In 

general, however, ψR ⊂ ψ. For propositions 1a) to 2b) and 4, we prove sufficiency by 

contrapositive. To prove necessity is trivial and is omitted.  

Proposition 1a:  

                   ∂ih/∂p1 ≥ 0 ∀ p ∈ ψ {or ∂ih/∂p1 ≤ 0 ∀ p ∈ ψ}      
                   ∂ih/∂p2 ≥ 0 ∀ p ∈ ψ {or ∂ih/∂p2 ≤ 0 ∀ p ∈ ψ}      
Suppose          :        :         :   
                        :        :        : 
                   ∂ih/∂pK ≥ 0  ∀ p ∈ ψ {or ∂ih/∂p2 ≤ 0 ∀ p ∈ ψ}    
 

Iff B ⊂ R
hψ , then R

hψ  = ψ.  

(Property I holds)  



 128

Proof of Proposition 1a1: Suppose not, then ∃ p* ∈ ψIR\B with ih(p*) < 0. Further ∃ 

pB = [ B B B
1 2, ,..., Kp p p ]T ∈ B which has the following property:  

B * B *
1 1 1 1{or }p p p p≤ ≥  
B * B *
2 2 2 2{or }p p p p≤ ≥  

:  : 
            B * B *{or }K K K Kp p p p≤ ≥  
From property I it follows that ih(pB) ≤ ih(p*). Finally, since ih(pB) ≤ ih(p*) < 0 it 

follows that pB ∈ IR
hψ . Hence B ⊄ R

hψ .              Q.E.D. 

We conclude that only B ⊂ ψ has to be evaluated if property I holds. In practice, 

however, we cannot check for the connected set but approximate it by Bg, thus still 

running the risk of violating regularity in the neighborhood of the points in Bg. 

Fortunately however, in many applications we can apply the results of the following 

proposition. 

Proposition 1b: Suppose property I and property II hold. Iff z = 

[ min{max} min{max} min{max}
1 2, ,..., Kp p p ]T ∈ R

hψ , then R
hψ  = ψ. 

Proof of Proposition 1b: Suppose not, then ∃ p* ∈ ψIR\{z} with ih(p*) < 0 and by 

property I (see proposition 1a) ∃ pB ∈ B with ih(pB) ≤ ih(p*), hence pB ∈ BIR. From 

property II it follows that ∃ one vertex point z = [z1, z2,…,zK]T with the following 

property:  

                                                 
1 The ‘or statements in the parenthesis {}’ of property I are to be read as follows: in each kth row either the 
statement without parenthesis or the statement within the parenthesis is true, except for the case that the derivative 
is zero on ψ. We explicitly allow that the signs across the K derivatives may be different. In the proof it then 
applies, that whenever in the kth row of property I the derivative is nonnegative, then in the kth row B

kp  ≤ *
kp . and 

equivalently, for nonpositive derivatives it applies B
kp  ≥ *

kp . 
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B B
1 1 1 1{or }z p z p≤ ≥  

B B
2 2 2 2{or }z p z p≤ ≥  

:  : 
B B{or }K K K Kz p z p≤ ≥  

Hence ih(z) ≤ ih(pB) ≤ ih(p*) < 0. So z ∈ IR
hψ .                 Q.E.D. 

Since – under the conditions property I and property II – whenever 

[ min{max} min{max} min{max}
1 2, ,..., Kp p p ]T ∈ R

hψ , then R
hψ  = ψ, we conclude that only this single 

vertex point has to be checked.2 If for some inequality constraint function ih property I 

does not hold, but instead the relaxed version property III, then the following result 

still greatly simplifies the Accept-Reject algorithm.  

Proposition 2a: Suppose ∂ih/∂pm ≥ 0 ∀ p ∈ ψ {or ∂ih/∂pm ≤ 0  ∀ p ∈ ψ } and ∂ih/∂p-m 

can take any value (property III). Iff B ⊂ R
hψ , then R

hψ  = ψ.  

For the proof we need the following notation: Partition the K × 1 vector p* ∈ ψ into 

the singular *
mp  and the K -1 × 1 vector *

m−p  and similarly partition pB ∈ B into B
mp  

and B
m−p . 

Proof of Proposition 2a: Suppose not, then ∃ p* ∈ ψIR\{B} with ih(p*) < 0. Further 

∃ pB = [ B B B
1 2, ,..., Kp p p ]T ∈ B which has the following property: 

B
mp  ≤ *

mp    {or B
mp  ≥ *

mp } 

B
m−p  = *

m−p    

By property III it follows that ih(pB) = ih( B
mp , B

m−p ) ≤ ih( *
mp , *

m−p ) = ih(p*) < 0.  

Hence B ⊄ R
hψ .               Q.E.D. 

                                                 
2 In case ψ is defined as the union of I ψi, then the sum of vertices [z1, z2,…,zI] are to be checked. 
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Note that the assumptions of property III are much weaker than of property I and will 

hold for a wide set of common flexible functional forms and their respective inequality 

constraint functions, in which case we can omit checking the interior of ψ. Similarly to 

proposition 1b, the following will further enhance the speed of MHARA.  

Corollary 2b: Fix the mth price axis from property III.  Let S ⊂ B ⊂ ψ be that side of 

the hyperrectangle, which is orthogonal to the mth
 price-axis and for which pm

S = 

min{max}
mp  ∀ ( S

mp , S
m−p ) ∈ S. Suppose property II and property III hold. Iff S ⊂ R

hψ , then 

R
hψ  = ψ.  

Proof of Corollary 2b: The proof follows the same logic as the proof of proposition 

1b.                 Q.E.D. 

In other words, if property II and III hold, then it is only necessary to evaluate S which 

is the side of the hyperrectangle orthogonal to the mth price-axis and on which the 

value of pm
 is either a) smallest, in the case that ∂ih/∂pm ≥ 0 or b) largest, in the case 

that ∂ih/∂pi ≤ 0. For illustration, see fig. A1.  
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Figure A1: Inequality Constraint Function Level Sets ih =  -1 and ih =  0 in price 

space π 

 If property II and property III hold, p* is irregular, and ∂ih/∂p3 ≥ 0, then the boundary side S facing 

towards the p1–p2 level contains irregular points pB ∈ SIR ⊂ S.  

 

 

 

 

 

 

 

 

 

SIR is shaded in red. The set ψ ⊂ π is indicated by the cube. 

The following proposition provides sufficiency conditions to check only the extreme 

points e
hZ  of a convex set ψ. 3 The result does not rely on property II and is hence 

more general than case 5 of table 1. If ψ is a hypercube, then e
hZ  is equivalent to the 2K 

vertices defined in section 3.1 as Zh.4  

Proposition 3: Suppose property IV holds. Iff e
hZ  ∈ R

hψ , then R
hψ  = ψ.  

Proof of Proposition 3: A quasi-concave function ih has the property that its upper 

contour set Uω = {p: ih ≥ ω, p ∈ ψ, ω ∈ ℜ1} is convex. R
hψ  = {p: ih ≥ 0, p ∈ ψ} is an 

                                                 
3 ze is an extreme point of ψ iff ze = λ⋅p1 + (1- λ)p2, ∀ p1, p2 ∈ ψ, λ ∈ (0, 1), implies ze = p1 = p2.  
4 If ψi is defined as a part of a hyperplane in π, the number of vertices might be different from 2K. For example, in 
the case that ψi has the form of a line, we just have two instead of 2K vertices, the starting and the ending point of 
the line. 

p2 

p1 

p3 

 

pB p* 
ih=-1 

ih=0 
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upper contour set U0 evaluated at ω = ih = 0 such that e
hZ ∈ R

hψ  (by assumption). Since, 

by property IV, ψ is convex it follows that R
hψ  = U0 ∩ ψ is convex (since the 

intersection of convex sets is convex). Finally, since any convex set is connected and 

e
hZ ∈ R

hψ , it follows that R
hψ  = ψ.            Q.E.D. 

Remarks: In order to identify quasiconcavity of property IV, in practice it is useful to 

make use of the bordered Hessians of i(⋅), see e.g. Simon  and Blume (pp.523-

531:1994).   

Proposition 4: Suppose the regularity conditions to be imposed belong to a subset of 

the following properties: (a) nonpositive slope, (b) nonnegative slope, (c) convexity, or 

(d) concavity. Suppose property V holds. Iff S* ∈ ψR then ψR = ψ. 

Proof of Proposition 4: Suppose not, then ∃ p* ∈ ψIR\S* for which either (a) 

nonpositive slope, (b) nonnegative slope, (c) convexity, or (d) concavity is violated.  

First suppose monotonicity, (a) or (b), is violated at p*. Then at least one element 

∂f(p*)/∂pk of the K × 1 gradient vector ∂f(p*)/∂p is wrong in sign. By the property of a 

homogenous of degree α function, α ∈ ℜ1, we have ∂f(tp*)/∂p = tα-1∂f(p*)/∂p ∀ t > 0. 

This implies that the signs of the elements of the gradient vector evaluated at tp* do 

not change relative to the gradient vector evaluated at p*, and hence any tp* is 

irregular as well. Consequently, also irregular is the point pS* ∈ S*∩l(0,p*) at which 

the ray through the origin and p* intersects with shield S*. 

Now suppose curvature, (c) or (d), is violated at p*. Then the Hessian evaluated at p*, 

H|p*, does not maintain the correct semi-definiteness. Again, by the property of 
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homogenous functions we have ∂f²(tp*)/∂p∂p′ = tα-2∂²f(p*)/∂p∂p′ ∀ t > 0. Since H|tp* 

only differs from H|p* by the multiple tα-2 the definiteness of the matrices is identical, 

hence tp* ∈ ψIR ∀ t > 0. Consequently, the point pS* ∈ S*∩l(0,p*) is also irregular.

                           Q.E.D.  

 

Appendix 1B: Proof of lemma 1 and proposition 5 to 6 

Proof of Lemma 1: The proof follows immediately from the definition of ΘR|ψ* = {β: i(p;β) 

≥ 0 ∀ p ∈ ψ*, β ∈ Θ} which implies that ceteris paribus, the larger the constraining set ψ* ⊂ 

π, the smaller is the support ΘR, i.e. if ψ1* ⊂ ψ2*, then ΘR|ψ1* ⊃ ΘR|ψ2*. Consequently, 

maximizing s(β) over the smaller set  ΘR|ψ2* can only lead to objective values equal or 

smaller than as maximizing s(β) over ΘR|ψ1*. 

Proof of proposition 5: The proof follows directly from the propositions 1b and 

proposition 3 and noting that if the evaluation sets are finite, the regularity posterior 

can be simulated with support ΘR|ψ = ΘR|ψg, i.e., regularity is guaranteed on the 

connected set ∀ p ∈ ψ and there is no reliance on an arbitrary approximation grid. 

Proof of proposition 6: The proof follows directly by noting that for nonlinear inequality 

constraints the constraint set ΘR is not necessarily convex. Hence linear combinations over ΘR 

can reside outside of ΘR. 
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Appendix 1C: Input price observations and out of sample 
points used for experiment II 
 
Table 1C: 26 × 3 input price observation matrix P 

 n    input price 1 input price 2 Input price 3 

1 0.59404 0.56000 0.55000 

2 0.52200 0.68344 0.84049 

3 0.55812 1.05000 1.18890 

4 0.57451 1.49900 1.46040 

5 0.94357 0.54122 0.81883 

6 0.69551 0.78415 0.60475 

7 0.82898 0.78613 0.73893 

8 0.84189 1.15940 1.09310 

9 0.80024 1.49740 1.45910 

10 1.12530 0.56597 1.08850 

11 1.15600 0.95502 1.37150 

12 1.38970 1.04470 0.64871 

13 1.21790 1.38860 0.76997 

14 1.02370 1.21050 1.34420 

15 1.09690 1.44260 1.47270 

16 1.46630 0.58908 1.30410 

17 1.44160 1.02990 1.41120 

18 1.41350 1.14770 1.47790 

19 1.38970 1.41070 0.61131 

20 1.48110 1.43560 0.79465 

21 1.48060 1.34620 1.06060 

22 1.43460 1.42840 1.46580 

23 0.50000 0.50000 0.50000 

24 1.50000 1.50000 1.50000 

25 1.50000 0.50000 1.50000 

26 0.50000 1.50000 1.50000 
    

C =  4 scenario input price vectors 
 c    input price 1 input price 2 input price 3 

1 1.00000 1.00000 1.00000 

2 1.28870 1.26140 0.87679 

3 3.00000 3.00000 3.00000 

4 4.39890 1.76720 3.91230 
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Table A1: Historical Weather, Sunrise and Sunset data 

 
All sunrise/sunset hours are displayed in clock time (typical DST schedule), GMT: Greenwich Mean Time 
Source: auinfo PTY LTD, Hornsby, NSW

Melbourne (VIC)                        

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Temperature 
in Celsius 20 20 19 16 13 11 10 11 13 15 17 19 

Rainfall in 
mm 50 45 50 55 55 50 50 50 60 65 60 60 

Average 
Sunrise 06:15 06:50 07:15 06:45 07:15 07:30 07:30 07:00 06:20 05:30 06:00 05:55 

Average 
Sunset 20:45 20:20 19:40 17:50 17:20 17:05 17:20 17:45 18:10 18:40 20:10 20:40 

Time: GMT+ 11 11 11 10 10 10 10 10 10 10 11 11 

               

Sydney (NSW)                        

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Temperature 
in Celsius 23 23 21 19 15 13 12 14 16 18 20 21 

Rainfall in 
mm 100 110 130 120 120 125 100 75 65 75 80 75 

Average 
Sunrise 06:00 06:30 06:55 06:20 06:40 07:00 07:00 06:30 05:50 07:15 05:40 05:40 

Average 
Sunset 20:10 19:50 19:15 17:30 17:00 16:50 17:00 17:30 17:45 18:10 19:40 20:00 

Time: GMT+ 11 11 11 10 10 10 10 10 10 10 11 11 

                          

Adelaide (SA)                        

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Temperature 
in Celsius 20 20 19 17 15 12 12 12 14 16 17 21 

Rainfall in 
mm 20 20 25 40 65 70 70 60 50 45 30 25 

Average 
Sunrise 06:20 06:50 07:15 06:40 07:00 07:20 07:20 06:50 06:20 05:30 06:00 05:55 

Average 
Sunset 20:30 20:10 19:35 17:50 17:20 17:10 17:20 17:45 18:05 18:30 20:00 20:25 

Time: GMT+ 10.5 10.5 10.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 10.5 10.5 

Appendix 2 
 

Appendix 2A: Climate 
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Appendix 2B: Data Processing 
 

Electricity data5 are missing for occasional half-hours.  We estimated the 

missing observations via interpolation using adjacent half hours.  Hourly weather data 

are also missing for some occasional hours as well for four entire days (none of which 

fall in within 27 August – 29 October in any year, except for the air pressure variable).  

Hourly unobserved data were interpolated using adjacent hours.  To estimate hourly 

weather in unobserved days, we applied a regression analysis which used information 

from the daily-level data set.  Details and code for this procedure can be obtained from 

the authors upon request.   

Schedules for most school vacations, state holidays, and federal holidays were 

obtained from the Australian Federal Department of Employment and Workplace 

Relations, The Department of Education and Children's Services (SA), and The 

Department of Education and Training (VIC).  For years in which information was not 

available from the above institutions, the dates were obtained by internet search. 

 Federal holidays in Australia include Australia Day, Good Friday, New Years 

Day, Easter Monday, Boxing Day, Anzac Day, and the Queen’s Birthday.  In years 

when Boxing Day and Anzac Day were moved to a different weekday than usual, both 

the original and the rescheduled holidays were modeled as holidays.  State-specific 

holidays include Labor Day, the Melbourne Cup Day, and the Adelaide Cup Day.  

Public school vacations include Christmas break, Easter break, Winter break and 

Spring break.   

                                                 
5 The NEMMCO data can be downloaded at http://www.nemmco.com.au/data/aggPD_2000to2005.htm. 
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Employment data are obtained from the Australian Bureau of Statistics, the 

Labor Force Spreadsheets, Table 12, using the series on the total number of employed 

persons by state for each quarter of the year.6  

Sunrise, sunset, and twilight data were sourced from the U.S. Naval 

Observatory.7  These data were then used to calculate the percentage of daylight and 

twilight in each half hour from January 1, 1999 to December 31, 2005 for Sydney, 

Melbourne, and Adelaide.  Finally, we obtained the days and times of switches to and 

from DST from the Time and Date AS Company, located in Norway.8  

While our data are provided in standard time, we conduct our analysis in 

nominal clock time.  We therefore need to convert our data to clock time, which, for 

most affected observations, requires a simple one-hour shift.  However, at the start of a 

DST period, the 02:00-03:00 interval (in clock time) is missing.  To avoid a gap in our 

data, we duplicate the 01:30-02:00 information into the missing 02:00-02:30 half hour, 

and likewise equate the missing 02:30-03:00 period to our 03:00-03:30 observation.  

Further, when the DST period terminates, the 02:00-03:00 period (in clock time) is 

observed twice.  Because our model is designed for only one observation in each hour, 

we average these dual observations. 

Throughout the paper, several times we compare dates in Australia to 

equivalent dates in the northern hemisphere:  In terms of sunrise sunset hours, the 

usual Australian DST starting date—the last Sunday in October—would 

                                                 
6 For the employment data we used the series IDs A163206C, A163563A, A163257C, A163308T and A163359T. 
7 The astronomical data may be downloaded from http://aa.usno.navy.mil/. 
8 “Time and Date AS Company” provides data online at 
http://www.timeanddate.com/worldclock/timezone.html?n=240&syear=1990. 
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approximately correspond to the last Sunday in April on an equivalent latitude in the 

northern hemisphere. Equivalently, the date of the 2000 DST start in NSW and VIC 

(the last Sunday in August) corresponds approximately to the last Sunday in February 

in the northern hemisphere.  Note, however, that the south latitude versus north 

latitude comparison can only be of an ‘approximate’ nature. Seasons are observed 

differently due to the fact that the earth is tilted toward the elliptic orbit in 23.5 

degrees and the distance of the earth to the sun is not constant.  This results into the 

following: on the dates of winter and summer solstices as well as the spring and fall 

equinoxes, the times of sunrise and sunset at a given latitude-longitude coordinate at 

the southern hemisphere are the same with the sunrise and sunset pattern at the same 

northern hemisphere latitude-longitude coordinate. However at all other dates, the 

sunrise-sunset times are slightly off, with differences increasing up to 15 minutes 

about 30 to 40 days after the equinox. Note that this approximation problem reduces 

with the dates of introducing DST earlier into the spring as the current DST switching 

dates discussed are closer to the equinox.9  

 

                                                 
9 For example, 36 days after the spring equinox (i.e. corresponding to the usual start of DST in VIC around 28 
October) Melbourne, at latitude 37.8 south and longitude 144.6 east observes sunrise and sunset at 19:17 and 08:52 
UTC respectively. At the northern hemisphere, by contrast, 36 days after equinox (corresponding to about 27 April) 
sunrise-sunset at the corresponding latitude 37.8 north and longitude 144.6 east was at 19:31 and 09:06 UTC 
respectively. So while the total number of the daylight hours is the same, the time of daylight is shifted by around 
14 minutes. 
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Appendix 2C: Information on Australia and the electricity 
market  

Figure C1: Population density of Australia in the year 2004 

 
Figure C2: Electricity Grid 

 
 

 

 

 

 

 

Source: NEMMCO, 2005 

Figure C2 maps the world’s longest interconnected power system, trading 

about 7 billion Australian dollars of electricity annually in the semi-privatized 

NEMMCO, serving about eight million end-use consumers.  In this grid, 92% of the 

electricity produced relies on the burning of fossil fuels, and in total about 48% of the 

total per capita GHG emissions in Australia stem from the electricity sector (Kemp, 
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2003).  Figure C3 displays the fuel mix in electricity production, and the split of 

consumption across economic sectors.  

Figure C3: Electricity Production and Consumption in Australia 

 
Source: NEMMCO, 2005 

 

Figure C4: Settlement of Electricity Prices in the Electricity Market of VIC, 
NSW, QLD and SA  

 
Source: Sayers, C. and Shields, 2001  
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Table C1: Characteristics of generators 

 
 

Appendix 2D: On Tourism to Australia 
Figure D1 displays tourism data for VIC and SA, demonstrating that the 2000 

Olympics did not significantly impact tourism in the third and fourth quarters of 2000.  

Tourism data for Sydney in NSW (Figure D2), however, shows that tourism increased 

in September 2000, and that there was no such increase in 1998 or 1999 (Australian 

Bureau of Statistics, 2001a, 2001b).  Moreover, anecdotal evidence from Melbourne 

newspapers shows that Melbourne (the most frequently touristed location in VIC) did 

not experience any change in tourism before, during, or after the Olympic Games in 

2000.  Further details on tourism may be found in the Australian Bureau of Statistics’ 

special report on Tourism related to the Olympics (2001b).  

Figure D1: Quarterly Room Nights Occupied in VIC (left panel) and SA (right 
panel) 

 

 

 

 
 

Source: NEMMCO, 2005 
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Figure: D2: Supply and Demand for Tourist Accommodations in Sydney  

 

 
 

Appendix 2E: Estimation of Treatment Effect Model and 
Robustness  
 
Table E1: Estimated treatment effects of the DST extension by half hour 

Half hour 
beginning at

βh
Std 

error
t-

statistic
exp(βh)-1

Half hour 
beginning at

βh
Std 

error
t-

statistic
exp(βh)-1

00:00 -0.129 0.007 -18.24 -0.121 12:00 0.001 0.002 0.33 0.001
00:30 -0.012 0.007 -1.77 -0.012 12:30 0.000 0.002 0.19 0.000
01:00 0.019 0.007 2.75 0.019 13:00 -0.001 0.001 -0.71 -0.001
01:30 -0.050 0.006 -7.66 -0.048 13:30 -0.006 0.001 -4.72 -0.006
02:00 -0.045 0.007 -6.81 -0.044 14:00 -0.003 0.001 -2.48 -0.003
02:30 0.055 0.006 8.53 0.057 14:30 0.009 0.002 5.25 0.009
03:00 0.076 0.006 12.10 0.079 15:00 0.013 0.003 5.31 0.013
03:30 0.073 0.006 11.31 0.075 15:30 0.010 0.003 3.08 0.011
04:00 0.068 0.007 10.27 0.071 16:00 0.008 0.004 2.09 0.008
04:30 0.057 0.006 8.77 0.059 16:30 0.009 0.005 1.97 0.009
05:00 0.045 0.006 7.19 0.046 17:00 0.002 0.005 0.41 0.002
05:30 0.032 0.006 5.16 0.033 17:30 -0.014 0.006 -2.32 -0.014
06:00 0.025 0.006 4.18 0.025 18:00 -0.027 0.007 -3.63 -0.026
06:30 0.019 0.006 3.23 0.019 18:30 -0.048 0.007 -6.48 -0.047
07:00 0.015 0.006 2.58 0.015 19:00 -0.066 0.007 -8.84 -0.064
07:30 0.079 0.006 12.87 0.082 19:30 -0.055 0.008 -7.08 -0.054
08:00 0.077 0.006 12.70 0.080 20:00 -0.026 0.008 -3.33 -0.025
08:30 0.024 0.006 3.82 0.024 20:30 -0.008 0.008 -1.04 -0.008
09:00 0.006 0.005 1.23 0.006 21:00 -0.005 0.008 -0.62 -0.005
09:30 0.004 0.005 0.79 0.004 21:30 0.001 0.007 0.13 0.001
10:00 0.002 0.004 0.48 0.002 22:00 0.005 0.007 0.68 0.005
10:30 0.000 0.004 0.01 0.000 22:30 -0.006 0.007 -0.85 -0.006
11:00 0.003 0.003 1.06 0.003 23:00 -0.027 0.006 -4.33 -0.026
11:30 0.000 0.003 0.13 0.000 23:30 -0.124 0.007 -18.69 -0.117  

 
Table E1 displays the estimated percentage impact of the DST extension on 

electricity demand in each half hour: these are the point estimates given by exp(βh) - 1, 

Source: Australian Bureau of Statistics, 2001. The vertical line indicates the 4th quarter in 2000 (December quarter). The 
treatment period “September” falls within the 3rd quarter 2000 and the treatment period “October” in the 4th quarter.  
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and correspond to Figure 6.  Note that the large effects in the late-night hours are 

caused by centralized off-peak water heaters in Melbourne (Outhred, 2006).  These are 

triggered by timers set on Standard Time—groups of heaters are activated at 23:30 and 

01:30.  Each turns off on its own once its heating is complete.  During the DST 

extension, each heater turns on one hour “late” (according to clock time).  This drives 

the negative, then positive, overnight treatment effects. 

Justification of using 12:00 to 14:30 as the control period 

Our estimation strategy uses the assumption that electricity demand in the 

afternoon is not affected by DST.  The purpose of this subsection is to offer graphical 

and regression results to justify this assumption and to explain our specific choice of 

12:00 to 14:30 as the base demand period for setting q .  

Figure E1 displays electricity demand for VIC and SA in 1999 and 2001-2005, 

one month before and one month after the late-October switch to DST in each year.  

Panel (a) indicates that morning demand increases immediately after the time change, 

while panel (c) shows that evening demand decreases.  However, panel (b) 

demonstrates that afternoon demand is unaffected by the time change. 

To verify the preliminary evidence offered by Figure E1, we perform a 

regression discontinuity analysis using the pre- and post-DST data in 1999 and 2001 to 

2005, in both SA and VIC.  The dependent variable is demand and the regressors 

consist of state and year fixed effects, their interaction, weather variables, a linear time 

trend, and a binary variable “DST” that is equal to one if DST is observed and zero 

otherwise.  
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Figure E1: Effect of DST on morning, afternoon and evening consumption 

  
  

 

 

 

 

 

 

 

 

 (a) morning 7:30-8:00     (b) afternoon 13:00-13:30      (c) evening 19:30-20:00 

Vertical axis: Electricity demand relative to demand on the Friday preceding the start of DST. Each day 
contains a maximum of 12 data points (2 states over 6 years). Data excluded are: the year 2000, 
weekends, holidays, school holidays and “transition vacation days”. 
 

When we run this regression using only data from the morning hours of 7:30-

8:00, we estimate that the coefficient on the DST variable is positive and significant: 

the point estimate is +121 with a standard error of 46.  This agrees with the increase in 

morning demand shown in panel (a) of Figure E1.  Similarly, we find that DST 

decreases evening demand: the point estimate during 19:30-20:00 is -103 with a 

standard error of 30. 

During the afternoon, however, the estimated effect of DST is insignificant.  

Table E2 displays estimates of the DST coefficient, along with standard errors and t-

values, for several afternoon half-hour intervals.10  Our base period choice of 12:00–

14:30 is driven by both the t-values shown and a desire to be conservative in our 

reference case estimate.  While the lowest available t-value is for 13:00-13:30, 

                                                 
10 Robustness checks for varying the sample size (changing the number of dates included before and after DST 
takes effect), using single hour equations or aggregating the hours did not yield results substantially different from 
those displayed in table E2. 
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suggesting that this would be an appropriate base period, its use yields a large estimate 

of the overall treatment effect θ: an increase in electricity consumption of 1.0%.  To 

be more conservative in our final estimate, we instead report reference case results 

using 12:00-14:30 as the base period, even though the estimates reported in Table E2 

suggest that DST may slightly increase electricity demand at this time.  Despite this 

choice of base period, we still find a point estimate of θ that is positive, and reject 

prior studies’ claims that extending DST conserves electricity. 

Table E2: Half-hourly DST effects on demand for VIC and SA  
Halfhour DST  std.error t-value 
11:00-11:30 40.19 45.89 0.88 
11:30-12:00 34.22 46.43 0.74 
12:00-12:30 42.05 46.11 0.91 
12:30-13:00 36.33 47.14 0.77 
13:00-13:30 13.28 48.74 0.27 
13:30-14:00 19.41 51.08 0.38 
14:00-14:30 46.83 51.70 0.91 
14:30-15:00 59.03 52.00 1.14 
15:00-15:30 53.46 52.77 1.01 
15:30-16:00 43.28 52.08 0.83 

The half hour from 13:00-13:30 exhibits the lowest t-value. The neighboring hours show monotonically 
increasing t-values respectively up to the period from 12:00-14:30 that is the base period used for q . 

Figure E2 displays the covariance matrix of the treatment coefficients β̂  

estimated from the reference case model. Each data series shown corresponds to the 

square root of the hth row of our estimated 48 x 48 clustered covariance matrix, 

cov( β̂ ). The peak value of each series coincides with the diagonal-element var( ˆ
hhβ ).  

The off-diagonal elements become smaller with increasing distance from the diagonal 

element, because the dependency between neighboring half-hours decreases over time.  

The U-shaped pattern stems from the fact that the treatment effects between 12:00-

14:30 have very small standard errors, by the design of the triple-DID method. 



 146

Figure E2: Illustration of the clustered covariance matrix of β̂   
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The estimated Newey-West covariance matrix is displayed in Figure E3.  Here, 

the dependency between ˆ
hβ and ˆ

h iβ + declines more quickly than was the case with the 

clustered covariance because the Newey-West explicitly accounts for the serial 

correlation of ε so that the remaining covariance structure of β̂  exhibits less 

dependency among the neighboring half hours.  
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Figure E3: Covariance matrix estimated by Newey-West 

 
 

 

On the numerical equivalence between ˆˆ (θ | )g Z  and N( θ̂ ,V( θ̂ )) 

In chapter 4.5 we approximate g( θ̂ ) by N( θ̂ ,V( θ̂ )).  Figure E4 displays ˆˆ (θ | )g Z  

and N( θ̂ ,V( θ̂ )) in the case of the pooled treatment effect.  Given the large sample, the 

close match between these two approaches justifies the approximation of the posterior 

ˆˆ (θ | )g Z with the simulated likelihood ˆˆ (θ)g  and the normal approximation N( θ̂ ,V( θ̂ )).11 

                                                 
11 The equivalence of these results is driven by central limit theorem: the sum of the 48 non-iid 
lognormals is large enough relative to the dependency, so that the asymptotics take over. 
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Figure E4: Estimated density function ˆˆ (θ | )g Z and simulated normal density  
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Analytical  
Estimates 
based on 
(3) and (4) 

Mean  0.00343 0.00345 0.00341 
Std  0.00433 0.00434 0.00432 
Skewness  0.02274 0.00110  
Kurtosis  3.00578 3.00422  

 
 

 

 

ˆˆ (θ | )g Z

(θ, V(θ))ˆ ˆ ˆN

ˆˆ (θ | )g Z


