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Abstract

The paper introduces a general methodological approach for the estimation of con-

strained optimisation models in agricultural supply analysis. It is based on optimality
conditions of the desired programming model and shows a conceptual advantage com-
pared with Positive Mathematical Programming in the context of well-posed estima-

tion problems. Moreover, it closes the empirical and methodological gap between
programming models and duality-based models with explicit allocation of fixed fac-
tors. Monte Carlo simulations are performed with a maximum entropy estimator to

evaluate the functionality of the approach as well as the impact of empirically relevant
prior information with small samples.
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1. Introduction

Quantitative models of multi-output multi-input cropping decisions in agri-
culture typically belong to one of two main methodological types: either
programming models or dual systems of supply and input demand equations.
The former determine input allocation to various production activities using
an explicit optimisation, the latter constitute closed-form solutions to eco-
nomic optimisation models. Maintained economic hypotheses and objectives
do not necessarily have to differ between these types.1 However, in empirical
work the structure and specification procedures are clearly distinguished: a
programming model is chosen when the analyst sees the need to explicitly
model complex technological or policy constraints under which behavioural
functions cannot be derived easily or at all. This generally comes at a cost:
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1 Programming models are often characterised as normative because they use an explicit optimisa-

tion. This neither reflects the original meaning nor is it a very useful distinction. The objective of

normative analysis is to say ‘what should be’ and thus farm or regional planning models qualify

for this category. However, programming models designed to explain or project behaviour are

positive in nature. Furthermore, an integrable dual supply system could just as well be used as

an explicit optimisation model for simulation and yield exactly the same results.



the inability to perform statistical estimation and validation for the whole
model. Dual equation systems, on the other hand, allow well-established
econometric techniques to be applied so that parametric specification can
be based on observed supply and demand decisions of agricultural producers.
This choice limits the model’s complexity and potentially oversimplifies for
the purpose of a differentiated analysis.
During the last decade these two methodological approaches seem to have

moved a little closer to each other. Chambers and Just (1989) developed a
dual supply model specification with explicit allocation of fixed factors.
This allowed a previous deficiency in modelling crop supply to be overcome,
by incorporating land constraints and the observable decision variable ‘land
allocated to production activities’. It also provided a useful framework for
modelling the European policy instrument ‘hectare premium’ separately
from product price effects (Guyomard et al., 1996; Moro and Sckokai,
1999). Nevertheless, additional constraints cannot be easily incorporated
and the choice of functional form is restricted because of analytical limita-
tions in deriving the behavioural functions to be estimated. From the
programming side, Howitt (1995a) presented ‘Positive Mathematical Pro-
gramming’ (PMP), which allows models to be calibrated on observed behav-
iour of a base year. PMP established itself as a widely used approach for the
specification of programming models designed for policy analysis.2 The incor-
poration of several observations employing an econometric criterion was
generally made possible by Paris and Howitt (1998) and applied to a cross-
sectional data set by Heckelei and Britz (2000). However, the theoretical
base of this approach is weak or at least not apparent.
This paper aims at moving the two methodological approaches closer

together. We present a general approach to estimating parameters of con-
strained programming models for agricultural supply analysis based on
optimality conditions of the desired model. This method provides a consistent
alternative to PMP for the specification of programming models. Simulta-
neously, it allows the estimation of models with multiple constraints that
cannot be solved to obtain behavioural functions. The methodology thus
supports specifications of more complex models and a more flexible choice
of functional form compared with previous econometric approaches with
explicit allocation of fixed factors. The paper is organised as follows: Section
2 explains why PMP is not well suited to the estimation of programming
models based on multiple observations. Section 3 describes a general alterna-
tive. Section 4 illustrates the approach for three optimisation models that
stem from the programming and econometric literature. It provides Monte
Carlo simulation results to demonstrate functionality with solely data-
based estimates. In addition, approaches using prior information exploit
the potential of maximum entropy techniques in this context and address
the problem of limited sample sizes often confronted by differentiated

2 For examples of PMP application see Howitt and Gardner (1986), House (1987), Kasnakoglu and

Bauer (1988), Arfini and Paris (1995), Cypris (2000) and Helming et al. (2001).
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modelling exercises. Section 5 concludes, discusses limitations and identifies
promising directions for further research.

2. Positive Mathematical Programming: short review and

critique

The general idea of PMP is to employ dual values of calibration constraints
that force the optimisation model to observed outcomes of endogenous vari-
ables (step 1). These dual values are used to specify additional non-linear
terms in the objective function that allow the observed outcomes to be repro-
duced exactly without calibration constraints (step 2). Starting from a typical
linear program (LP) in agricultural supply analysis, step 1 can be illustrated as

max
l

Z ¼ p
0
l� c

0
l subject to Al � b ½k�; l � ðlo þ eÞ ½q�; l � 0 ð1Þ

where Z is the objective function value, p, l and c are ðN � 1Þ vectors of pro-
duct prices, non-negative activity levels and variable costs per activity unit,
respectively. A represents an ðM �NÞ matrix of coefficients, b and k are
ðM � 1Þ vectors of resource availability and their corresponding shadow
prices. The ðN � 1Þ vector l

o contains observed activity levels in a base
period, e is an ðN � 1Þ vector of small numbers and q ðN � 1Þ contains the
dual variables of the calibration constraints. In the second step of PMP, the
dual values q are used to specify a non-linear variable cost function CVðloÞ,
such that the ‘variable’ marginal cost MC

Vðlo) of the activities is equal to
the sum of the known cost c and the ‘non-specified marginal cost’ q. In case
of the frequently used quadratic functional form, the following condition
for calibration is implied:

MC
V ¼ @CVðloÞ

@l
¼ dþQl

o ¼ cþ q ð2Þ

where the ðN � 1Þ vector d and the ðN �NÞ symmetric positive definite
matrixQ correspond to the linear and quadratic terms of CVðloÞ, respectively.
This condition does not include the opportunity cost of using fixed resources,
because they are still accounted for by the resource constraints in the resulting
model:

max
l

Z ¼ p
0
l� d

0
l� 0:5l0Ql subject to Al � b ½k�; l � 0: ð3Þ

To solve the underdetermined system (2) with N þNðN þ 1Þ=2 parameters
and N equations, the literature suggests many approaches, which include
simple ad hoc procedures with some parameters set a priori (Howitt,
1995a), the use of supply elasticities (Helming et al., 2001) and the employ-
ment of a maximum entropy criterion (Paris and Howitt, 1998). As long as
conditions (2) are satisfied, the calibration of the resulting optimisation
model is guaranteed, but the different specifications of d and Q imply signifi-
cant differences with respect to the simulation behaviour (see Cypris, 2000, or
Heckelei and Britz, 2000).
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However, this paper is concerned not with calibration but with estimation of
programming models. Paris and Howitt (1998) and Paris (2001) already sug-
gest the possibility that more than one observation on production outcomes
could be incorporated, implying a set of N marginal cost conditions (2) for
each observation. Heckelei and Britz (2000) use this idea for the estimation
of regional cost functions based on a cross-sectional sample.
Here wewant to argue that the PMP procedure is not well suited to exploiting

the additional data information, because the derived marginal cost conditions
do not allow consistent estimation of the parameters. For this purpose, it is
useful to look at PMP from the perspective of an econometrician. This implies
having some idea of a ‘true’ model, or at least the assumption that a specific
model is capable of representing the true data generating process adequately.
Many PMPmodellers have apparently believed this with regard to the resulting
non-linear model ultimately used to perform economic analysis.
To show the inconsistency of PMP we take, for example, the quadratic

model (3) and assume exclusively positive activity levels and binding resource
constraints at the optimal solution. The first-order conditions imply the
shadow price values:

k ¼ ðAQ�1
A

0Þ�1ðAQ�1ðp� dÞ � bÞ: ð4Þ

In the first step of PMP, equation (1), a different result is obtained: we parti-
tion l into two subvectors, an ððN �MÞ � 1Þ vector of ‘preferable’ activities,
l
p, bounded by the calibration constraints and an ðM � 1Þ vector of marginal
activities, lm, bounded by the resource limits. Then the dual values

ðaÞ k ¼ ðAm0Þ�1ðpm � c
mÞ; ðbÞ qp ¼ p

p � c
p � A

p0k; ðcÞ qm ¼ 0 ð5Þ

can be derived. Notice that in (2) k is exclusively determined by objective
function entries and technological coefficients of the marginal activities pm,
c
m andA

m. Therefore, they are generally different from the values of k implied
by the quadratic model, because in (1) k is determined by p, d, A, b and Q.
Thus, the value of k calibrated by step 1 of PMP (5), is expected to be different
from the one implied by the model assumed to represent farmer behaviour
and used as the final simulation model, i.e. model (2). Now, because step 1
of PMP sets q simultaneously with k (5b) and step 2 uses q to specify MC

V,
the latter vector is also generally inconsistent with model (2). Consequently,
the set of equations (2) cannot be seen as unbiased estimating equations
and will generally yield inconsistent parameter estimates if the true data gen-
erating process is correctly described by the quadratic model.

3. A general alternative

Our suggested ‘general alternative’ to PMP relies on a simple principle. It
directly employs the optimality conditions of the desired programming
model. No ‘step 1’ for the determination of dual values of calibration con-
straints is necessary. Instead, the simultaneous estimation of shadow prices
and parameters avoids methodological inconsistencies.
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The basic principle can be illustrated by writing the programming model as
a general Lagrangian form with an objective function hðy jaÞ to be optimised
subject to a constraint vector gðy jbÞ ¼ 0:

Lðy; k ja; bÞ ¼ hðy jaÞ þ k0½gðy jbÞ�
where y, k, a and b represent column vectors of endogenous variables, unknown
dual values, parameters of the objective function and parameters of the con-
straints, respectively. The appropriate first-order optimality conditions are

@L

@y
¼ @hðy jaÞ

@y
þ k0

@gðy jbÞ
@y

¼ 0

@L

@k
¼ gðy jbÞ ¼ 0:

For the case of inequality constraints gðy jbÞ � 0, we need to substitute the
gradient with respect to k by the complementary slackness representation3

@L

@k
¼ gðy jbÞ � 0; k� gðy jbÞ ¼ 0:

The unknowns k, a and b of these Kuhn-Tucker conditions can be estimated
with some econometric criteria applied directly to these equations. Depending
on the parametric specification, appropriate curvature restrictions (second-
order conditions) might have to be enforced as well.
The direct use of optimality conditions for estimation is certainly not new in

itself. In the context of investment models, for example, the Euler equations
(dynamic equivalents of Kuhn–Tucker conditions) have been frequently used
as estimating equations to overcome analytical and empirical problems for
more complex models (Chirinko, 1993, p. 1893f). However, their use as an
alternative to PMP or to the estimation of behavioural functions in the con-
text of multi-output agricultural supply models has not been considered. One
of the examples in the next section will show that not only is this approach
useful for estimating typical primal agricultural programming models but
that it also provides a flexible alternative for estimating parameters of dua-
lity-based behavioural functions with explicit allocation of fixed factors. In
this context, the only difference between programming and econometric
models is the model form used for simulation purposes.
It is perhaps not surprising that one of the most innovative PMP experts has

already used this principle in part for the calibration of an agricultural supply
model (Paris, 2001). Paris’s ‘Symmetric Positive Equilibrium Problem’ cali-
brates a multi-input multi-output profit model on the basis of the marginal
cost conditions. However, his approach still uses a ‘first phase’ to determine
dual values of calibration constraints with the aforementioned inconsistency
to the final model specification. Furthermore, unlike the models considered
here, Paris’s ultimate simulation model is not based on an optimisation

3 The symbol ‘�’ represents the Hadamard or element-wise product of two matrices. If aij and bij are

the elements of two matrices with equal dimension, A and B, then A� B ¼ C, where C is of the

same dimension as A, B and each element of C is defined as cij ¼ aij � bij 8 i; j.
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hypothesis. Finally, our examples in the next section differ from Paris’s in that
our models all imply the existence of at least one fixed factor.4

4. Examples and Monte Carlo evidence

The models presented in this section are intended to illustrate our proposal for
the estimation of constrained programming models. The models featured are
not necessarily the most useful models for agricultural supply analysis, but are
rather chosen to span the literature on programming models and econometric
models with explicit allocation of fixed factors. Monte Carlo simulations
based on artificial data and known parameters show the performance of
the estimation approach through statistical evaluation of errors made in esti-
mating the true parameters. The use of the Generalised Maximum Entropy
(GME) estimator allows the influence of prior information on estimation
results to be assessed in situations with limited data information. It also has
the advantage of computational stability, especially in the non-linear model
context encountered in the applications below.

4.1. Land allocation with quadratic cost function

This subsection deals with estimating the parameters of the optimisation
model employing a quadratic cost function often used in the PMP context
and already described above. For simplicity, we consider only the resource
land as fixed, obtaining a quadratic programming model (QP model) with a
scalar shadow price. In addition, we replace the vector of prices p by a
vector of gross margins gm5 to obtain

max
l

Z ¼ gm
0
l� d

0
l� 0:5l0Ql subject to u

0
l � b ½��; l � 0 ð6Þ

with the ðN � 1Þ summation vector u, i.e. a vector of ones.
If we assume that the optimal land allocations satisfy the land constraint as

an equality for every observation t ¼ 1; . . . ;T , and that observed land alloca-
tions, lot , are obtained from optimal values by adding an ðN � 1Þ vector of
stochastic errors et with mean zero and standard deviation �i, we can write
the first-order conditions as6

gm
o
t � �tu� d�Qðlot � etÞ ¼ 0; u

0ðlot � etÞ ¼ bot : ð7Þ
This error specification can be motivated in several different ways. It might
represent a measurement error of the variable or an optimisation error by
the farmer, or stem from specific circumstances relevant to the optimal
allocation of the respective economic unit unknown to the econometrician,

4 For a critical discussion of Paris (2001) see Britz et al. (2003).

5 The quadratic cost function represents ‘some’ unknown non-linear cost, which is independent of

the variable inputs per activity unit. This lack of rationalisation in the model is analogous to

many PMP applications. The illustration based on this model by nomeans indicates the preferability

of the model.

6 Here and subsequently equations are valid for all elements in the respective indices, i.e. in this spe-

cific case for all t ¼ 1; . . . ; T .
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or some combination of these factors. It implies that the optimum for each
observation is obtained at some unobserved level of the decision variable
and that the deviation of the true optimum from the observed allocation is
randomly distributed across observations.7

For estimation, we use the Generalised Maximum Entropy (GME)
approach (Golan, Judge and Miller, 1996), which incorporates out-of-
sample information in a flexible way.8 We reparameterise the error vectors
as expected values of a discrete probability distribution. The ðN � ðN � 2ÞÞ
matrix V with S ¼ 2 support points for each error term bounds the support
to �5 standard deviations.9 For the simulation experiments below we have
N ¼ 3 crops so that the error terms can be represented as the multiplication
of V with an ððN �SÞ � 1Þ vector of probabilities wt to obtain

et ¼ Vwt ¼
�5�1 5�1 0 0 0 0

0 0 �5�2 5�2 0 0

0 0 0 0 �5�3 5�3

2
64

3
75

w11t

w12t

w21t

w22t

w31t

w32t

2
666666664

3
777777775
: ð8Þ

The complete GME formulation is then10

max
wt;Q;L;�t

HðwtÞ ¼ �
XT
t¼1

w
0
t lnwt ð9Þ

subject to

gm
o
t � �tu�Qðlot � VwtÞ ¼ 0 ð10Þ

u
0ðlot � VwtÞ ¼ bot ð11Þ

Q ¼ LL
0 with Lij ¼ 0 8 j > i ð12Þ
XS
s¼1

wits ¼ 1 ð13Þ

7 The stochastic specification of the optimisation model is maintained in the estimation, because the

first-order conditions are used as estimating equations directly. It avoids potential inconsistency

problems of many stochastic specifications of supply and input demand equations derived from

dual indirect objective functions (on this issue see, for example, McElroy (1987), or more recently

Pope and Just (2002)).

8 In this context of ‘well-posed’ estimation problems with more observations than parameters to be

estimated, classical techniques such as least squares could have been applied as well.

9 The ‘right’ number of support points as well as the range of the support is an often discussed but

not ultimately solved question. We chose two support points here mainly to restrict the computa-

tional demands in the already complex Monte Carlo simulation exercises, despite the fact that

three or four support points promise a limited reduction of the mean estimation error (Golan,

Judge and Miller, 1996, pp. 139–140). With respect to the support range, Golan et al. suggest

the ‘3-sigma’ rule. Preckel (2001) advocates a rather large range to approximate the behaviour

of the least-squares estimator.

10 For the current case of just one resource constraint, the vector d is not identified. Therefore its ele-

ments are set to zero. See Appendix for further details.
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where HðwtÞ denotes entropy, equation (12) guarantees the positive definite-
ness ofQ based on a Cholesky factorisation,11 and (13) ensures that the prob-
abilities add up to one. Note that we do not need any reparameterisation
of model parameters, because we consider only ‘well-posed’ problems with
positive degrees of freedom in our simulations (Preckel (2001) denotes this
estimator as GME��). At this point, the parameters and shadow values are
freely chosen so as to maximise the entropy related to the error terms.
Later, we consider situations where support points for functions of para-
meters or for shadow prices of fixed factors are employed to incorporate
prior information.
A Monte Carlo simulation experiment is used to test the estimator’s preci-

sion. Based on the output and input differentiation in Howitt (1995b),12 a
data set with T observations is generated for T different random vectors
gmt and bt for given parameters Q. Normally distributed errors are added
to the optimal land allocations ‘�1t and ‘�2t of the first two crops with a standard
deviation of 2 per cent of the average land allocation, so that the ‘observed’
allocations are calculated as ‘o1t ¼ ‘�1t þ e1t and ‘o2t ¼ ‘�2t þ e2t. To ensure
that the land restriction is binding at the observed production activity levels
we set ‘o3t ¼ bt � ‘�1t � ‘�2t.
An anonymous referee rightly suggested that our standard deviation for the

land allocations is rather small and that correlation between the first two
errors is also a more appropriate setup. We agree that a combination of the
error types mentioned above would suggest a larger variance, and we present
results for larger standard deviations below in Figure 2. However, we chose 2
per cent as the standard case across most simulations presented in the paper,
because the stochastic specification of the following models is more consistent
with the interpretation of the land allocation error as measurement error only
(see footnote 15). We performed sensitivity analyses with correlation between
the errors of the first two crops and concluded that it produced no changes of
relevance for the conclusions drawn.
For each generated data set, the model parameters are estimated with the

GME approach and the whole procedure is repeated 1000 times for each
sample size. The quality of the estimation is evaluated using the measures
absolute bias (ABIAS¼ absolute value of the difference between average esti-
mate across samples and true value of the parameter) and root mean square
error (RMSE¼ square root of the mean squared distance between estimates
and true parameter). To summarise the results, the measures are summed
over all estimated parameters (here all elements of Q) to obtain ‘SABIAS’
and ‘SRMSE’.

11 Lau (1978) introduced the Cholesky factorisation to ensure curvature in supply analysis by using a

reparameterised model. Our use of it as an explicit constraint during estimation was originally sug-

gested by Gallant and Golub (1984).

12 See the Appendix for the basic data set from Howitt, which reflects the values of non-random

model variables and the means of random variables in the simulation exercises.
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Figure 1 presents the results for different sample sizes. SRMSE decreases
with increasing sample size, indicating consistency of the estimator.13 The
bias (SABIAS) reaches negligible values already at a sample size of 20. Recal-
ling that the MSE is the sum of the squared bias and the variance of the
estimator, Figure 1 shows that the bias reflects only a small fraction of the
RMSE and the much more important part of the MSE is given by the
standard errors of the estimates. For small sample sizes, this could result in
very poor estimates. In this case, the use of out-of-sample information is a
potential remedy. Ideally, the use of prior information would reduce the esti-
mator’s variance at small sample sizes without introducing a strong additional
bias.
To achieve a better feel for the required precision of the prior information

and the general interplay between prior and data in our modelling context, we
further extended the simulations. An often feasible procedure for incorporat-
ing out-of-sample information is the use of priors on elasticities, as the
literature often provides some idea of their range. Elasticities can be repara-
meterised in the same way as the error terms. For the current model, we can
employ the following analytical expression for the ðN � 1Þ vector of land
allocation elasticities with respect to own gross margins e:14

 

 

Figure 1. QP model—SRMSE and SABIAS without prior information.

13 Mittelhammer and Cardell (2000) prove consistency of the GME approach for the general

linear model under mild regularity conditions. No such general theoretical result is known to

us for non-linear models except for the special case of the multinomial model (see Golan, Judge

and Perloff, 1996).

14 The expression for the gradient @l=@gm is obtained by first solving the first-order conditions (7)—

ignoring the error terms—for the vector of land allocations l in terms of gm and Q. Then, the

(matrix) derivative of this expression with respect to gm is taken.
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e ¼ diag
@l

@gm
� gm

�llo

� �0� �

¼ diag ðQ�1 �Q
�1
uðu0Q�1

uÞ�1
u
0
Q

�1Þ � gm

�ll
o

� �0� �
ð14Þ

where ½@l=@gm� represents the ðN �NÞ Jacobian matrix of the land demand
functions and the i, jth element of the ðN �NÞ matrix ½gm=�ll

o� is defined as
the sample mean of gross margin i, gmi, divided by the sample mean of
observed land allocation to crop j, ‘

0
j . Combined with the elasticity reparame-

terisation we have to add the constraint

V
"
w
" ¼ diag ðQ�1 �Q

�1
uðu0Q�1

uÞ�1
u
0
Q

�1tÞ � gm

�ll
o

� �0� �
ð15Þ

with

V
" ¼

v"11 v"12 0 0 0 0

0 0 v"21 v"22 0 0

0 0 0 0 v"31 v"32

2
64

3
75 and w

" ¼

w"
11

w"
12

w"
21

w"
22

w"
31

w"
32

2
666666664

3
777777775

to the previous (10)–(13), where v"i1 and v"i2 are the lower and upper support
points of the ith elasticity, respectively, and w"

i1 and w"
i2 the corresponding

probabilities. The objective function has to be modified to

max
wt;w

";Q;L;�t

HðwtÞ ¼ �
XT
t¼1

w
0
t lnwt � w

"0 lnw": ð16Þ

The intuition behind the objective function is as follows: the entropy criterion
pulls towards the centre of the elasticity support range, in opposition to the
error terms of the data constraints. The smaller the elasticity support range,
the higher the penalty for deviating from the support centre. Consequently,
the width of the support range reflects the precision of the a priori informa-
tion. A necessary condition for consistency, however, is that the true elasticity
remains within the support range. Only then is it possible that the increasing
weight of the error probabilities in the objective function draws the parameter
estimates to their true values as more observations become available.
The approach is analogous to the typical GME procedure, but the standard

theoretical exposition (Golan, Judge and Miller, 1996) and agricultural
economics applications (e.g. Lence and Miller, 1998a, 1998b; Oude Lansink,
1999; Zhang and Fan, 2001) have so far employed direct restrictions on the
parameter space only to make the approach suitable for ill-posed and/or ill-
conditioned problems. The restrictions on functions of parameters used
here, however, are often more appropriate for incorporating available out-
of-sample information.
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Now we turn to the specific formulation of priors in our simulation experi-
ments. The support point range for the elasticities is set to four, so that a
rather large variation of the estimated elasticities is possible without strong
penalties. Two different support centres are considered. In one case they
are equal to the true elasticities, in the other case they are shifted upwards
by 0.3.
Table 1 presents the RMSE of the gross margin elasticity of one output at

different sample sizes. We see that the large variation of parameter estimates
displayed in Figure 1 is accompanied by rather stable elasticity estimates even
with little data information. Nevertheless, one can infer the general advantage
of incorporating the prior information: the estimation error decreases for
small sample sizes for both formulations of the priors, although the ‘true’
prior shows some advantage at the sample size of five. Beyond a sample
size of 20, no differences between the three variants exist and they all
approach the true parameters as sample size increases.
The impact and usefulness of prior information is certainly also related to

the noise in the data generation process. Figure 2 shows sums of root mean
square errors across all three gross margin elasticities for two different stan-
dard deviations of the error terms (measured as a percentage of the mean
land allocation). Clearly, the relative advantage of using priors at small
sample sizes increases with the noise in the data generation process. However,
for both versions, a sample size of 50 is enough to render the priors almost
irrelevant for the quality of the estimates.
We note that the inclusion of prior information at small sample sizes can be

seen as an intermediate approach between the calibration of the model to
exogenous elasticities for some base year value and the estimation of model
parameters with sufficient data information. Consequently, one can use at
least the small amount of data information available without jeopardising
the ‘plausibility’ of the estimation results.

4.2. Input allocation with crop-specific production functions

In this section we consider a programming model that allocates variable and
fixed inputs to different production activities with a functional representation

Table 1. QP model—RMSE of one estimated gross margin elasticity with different
priors

Prior information Sample size (T)

5 10 20 30 50

‘without’ 0.187 0.110 0.071 0.055 0.045

‘true’ 0.158 0.105 0.063 0.055 0.045

‘false’ 0.163 0.105 0.063 0.055 0.045

Source: own calculations. The value of the true gross margin elasticity is 1.03.
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of crop-specific production technology. The general form of the desired profit
maximisation model is given by

max
xik;bij

Z ¼
XN
i¼1

pi fiðxik; bij jhiÞ �
XN
i¼1

XK
k¼1

qkxik

subject to
XN
i¼1

bij ¼ bj ½�j�
ð17Þ

where i, j, k are indices of outputs as well as fixed and variable inputs, respec-
tively, and hi is a vector of technological parameters. Prices and allocated
variable inputs are denoted by qk and xik, whereas bij and bj represent allo-
cated and total available quantities of the fixed inputs. The transformation
of input to output quantities is given by

yi ¼ fiðxik; bij jhiÞ: ð18Þ

The first-order conditions comprise the resource constraints, the marginal
value product conditions of variable inputs, and the shadow price equations
of fixed factors:

XN
i¼1

bij ¼ bj ;
@Z

@xik
¼ pi

@fiðxik; bij jhiÞ
@xik

� qk ¼ 0;

@Z

@bij
¼ pi

@fiðxik; bij jhiÞ
@bij

� �j ¼ 0:

ð19Þ

Solving this system of first-order conditions for the input demand and output
supply functions is very cumbersome, if not impossible. Instead, we can use

 

   

Figure 2. QP model—SRMSE of estimated gross margin elasticities with different

priors and noise components.
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equations (18) and (19) directly as data constraints for estimating the
unknowns hi and �j . This implies a considerable advantage with respect to
the choice of functional form as well as to the degree of model complexity.
Again, we assume that the data generation process is disturbed by random

errors around the endogenous model variables, here not only land allocations,
but all input allocations xik and bij as well as supply quantities yi. The corre-
sponding errors exikt, e

b
ijt and e

y
it for each observation are reparameterised as

exikt ¼ v
x
ikw

x
ikt; ebijt ¼ v

b
ijw

b
ijt; and e

y
it ¼ v

y
i w

y
it ð20Þ

with the ð1� 2Þ vectors vxik, vbij and v
y
i representing lower and upper support

points and the ð2� 1Þ w
x
ikt, w

b
ijt and w

y
it their corresponding probabilities

for each observation. Adding indices for observations t ¼ 1; . . . ;T we
obtain the complete GME program as

max
wx
ikt
;wb

ijt
;w

y
it
;hi ;�jt

Hðwx
ikt;w

b
ijt;w

y
itÞ

¼ �
XN
i¼1

XT
t¼1

XK
k¼1

w
x0
ikt lnw

x
ikt þ

XT
t¼1

XM
j¼1

w
b0
ijt lnw

b
ijt þ

XT
t¼1

w
y0
it lnw

y
it

" #
ð21Þ

subject to

pit
@fiððxoikt � v

x
ikw

x
iktÞ; ðboijt � v

b
ijw

b
ijtÞ jhiÞ

@xik
� qkt ¼ 0 ð22Þ

@Z

@bij
¼ pit

@fiððxoikt � v
x
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x
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b
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b
ijtÞ jhiÞ

@bij
� �jt ¼ 0 ð23Þ

ðyoit � v
y
i w

y
itÞ ¼ fitððxoikt � v

x
ikw

x
iktÞ; ðbojt � v

b
ijw

b
ijtÞ jhiÞ ð24Þ

XN
i¼1

ðboijt � v
b
ijw

b
ijtÞ ¼ bjt ð25Þ

XS
s¼1

wx
ikts ¼ 1;

XS
s¼1

wb
ijts ¼ 1;

XS
s¼1

w
y
its ¼ 1: ð26Þ

Again, the data constraints have to be satisfied at estimated values of the
endogenous variables calculated as the observed values minus the estimated
errors.15

Before presenting the Monte Carlo simulations for this model, we discuss
the prior information used with this model to test its impact on the estimator’s

15 The introduction of error terms around the endogenous variables xikt and bijt allows estimation of

input allocations consistent with the economic model. The presumed quality of ‘observed’ input

allocations can be taken into account by varying the size of the support range. The chosen specifi-

cation implies that output does not depend on the errors in input demand, because they are sub-

tracted from the observed values in the production function (24). This works well for the case of

measurement errors, but optimisation errors are likely to influence production (see Pope and

Just, 2002). For appropriate data in a real world empirical application, a more sophisticated error

specification might allow for separate identification of error types.
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accuracy. As a variation on the previous model, here we assume information
is available on the mean value of shadow prices of the fixed factors.16 The
GME approach needs to be modified by adding a constraint with the
reparameterised mean shadow prices for the two fixed factors

V
�
w
� ¼ v�11 v�12 0 0

0 0 v�21 v�22

" # w�
11

w�
12

w�
21

w�
22

2
6664

3
7775 ¼

1

T

XT
t¼1

�1t

1

T

XT
t¼1

�2t

2
66664

3
77775: ð27Þ

The objective function is extended by the additional probabilities to become

max
wx
ikt
;wb

ijt
;wy

it
;w�;hi ;�jt

Hðwx
ikt;w

b
ijt;w

y
it;w

�Þ
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t¼1
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ikt lnw
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t �11
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w
b0
ijt lnw

b
ijt þ

XT
t¼1

w
y0
it lnw

y
it

" #

� w
�0 lnw�: ð28Þ

The functional form for the production technology chosen for the Monte
Carlo simulations is the Constant Elasticity of Substitution (CES) function,
which distinguishes between two variable inputs (chemicals and capital)
and two fixed inputs (land and water).17 This model structure is analogous
to that of Howitt (1995b), which was treated using PMP. However, our
model does not contain any additional non-linear cost terms in the objective
function, and the estimation approach does not require the determination of
dual values of calibration constraints from the ‘step 1’ of PMP. In addition,
our model requires decreasing returns to scale, to allow for positive produc-
tion levels of all crops.18

The data generation process adds normally distributed error terms to the
optimal output and input quantities (with standard deviations of 10 and 2
per cent respectively from the mean quantities) to obtain ‘observed’ alloca-
tions, where again the ‘incorrectly measured’ allocated quantities of the
fixed inputs add up exactly to the available and known total quantities. For

16 The use of prior information on elasticities for this model is also possible despite the fact that an

analytical expression for the elasticities might not be available. One can use discrete approxima-

tions based on additional ‘artificial’ constraints that are simply copies of the data constraints,

but with systematically varied exogenous prices and variable ‘simulated’ output and input quanti-

ties. Although conceptually simple, the mathematical representation of this approach is considered

too cumbersome for this paper.

17 For the true parameter values, see the Appendix. Additional parametric restrictions included

during estimation so as to obtain a well-defined production function are also reported in the

Appendix.

18 Constant returns to scale (as in Howitt, 1995b) would result in specialisation, because the maximum

profit per unit of land in each activity would be independent of the land allocation. Consequently,

the number of positive activity levels at the optimum could not be larger than the number of fixed

factors, as in a linear programming model.
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the simulation we distinguish again between a ‘true’ and a ‘false’ prior. The
former defines supports for the shadow prices of land and water around the
true values at the mean of the observations. The latter is defined by a support
centre that is 10 per cent below the true values. The size of supports is chosen
to be 40 per cent of the true mean shadow price. This is well above 5 standard
deviations of the mean shadow prices across samples so that the support
contains the true mean shadow price for both types of priors with almost
certainty.
Figure 3 shows the absolute bias and the root mean square error as sums

over the parameters of all three production functions (SABIAS and
SRMSE). SRMSE decreases with increasing sample size, suggesting consis-
tency of the estimator. The use of both types of prior information again
reduces the SRMSE compared with the data-only case. The reduction is rela-
tively modest compared with the priors on elasticities for the QP model, but it
is still relevant even for T ¼ 100. However, the difference between the true
and the false prior is negligible from T ¼ 30 upwards. It is interesting to
note that the bias of the true prior lies above the one for the false prior.
This can certainly happen in the case of a biased estimator but should be
seen as a lucky ‘accident’. In fact, it can be shown that the result is reversed
if we formulate the false prior such that the centre of the supports lies
above the true values.
Generally, prior information on shadow prices could also be formulated for

every observation t instead of for the shadow price mean, which might better
reflect the type of data available (e.g. leasing rates for each observation). In
this case, however, the number of associated probabilities in the objective

Source: Own calculations. 
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Figure 3. SRMSE and SABIAS of parameter estimated with different prior informa-
tion on shadow prices of fixed resources in the CES model.
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function would increase with increasing observations. This may harm the con-
vergence of the estimates to the true parameter values when (as inevitably
occurs) the centres of the shadow price supports are not the true values. Addi-
tional simulations (not reported here) have supported this hypothesis. This
effect, however, could be counteracted by including a factor in the objective
function that continuously decreases the weight of the prior-related probabil-
ities with increasing sample size.19

4.3. Allocation of fixed inputs with crop-specific profit functions

Our third example keeps the general model structure of the previous subsec-
tion with respect to assumptions about producer behaviour and crop-specific
technologies with allocable inputs, but employs duality concepts for the deter-
mination of variable output and input quantities. We return to the case with
only one fixed factor, and adopt the specification used by Guyomard et al.
(1996) and Moro and Sckokai (1999), who base their analysis on econometri-
cally estimated systems of supply and explicit land allocation functions. On
the one hand, we want to point out the full equivalence of our approach
with respect to parameter estimation. On the other hand, we want to illustrate
the advantages with respect to flexibility in the choice of functional form as
well as greater complexity of the model structure. The desired programming
model is given by

max
l

Z ¼
XN
i¼1

�iðpi; q; ‘i jhiÞ subject to
XN
i¼1

‘i ¼ b ½�� ð29Þ

where

�iðpi; q; ‘i jhiÞ ¼ max
yi ;xi

piyi �
XK
k¼1

qkxik subject to yi ¼ fiðxik; ‘iÞ
" #

ð30Þ

is a restricted profit function of crop i for a given land allocation ‘i and hi is
now a vector of profit function parameters for product i. Model (29) distri-
butes the available land b to the different production activities so as to max-
imise overall profit Z, where the profit of the single crops is determined by
�iðpi; q; ‘i jhiÞ. Consequently, the optimal land allocation is obtained if the
marginal profits of land in each use are equal, i.e. if the first-order conditions

@�iðpi; q; ‘i jhiÞ
@‘i

� � ¼ 0 ð31Þ

are satisfied. For some functional forms of �ið:Þ a solution of system (31)—
observing the land constraint in (29)—is possible and results in explicit land
allocation equations depending on exogenous model parameters. Guyomard

19 In the context of the method of regularisation (see Golan, Judge and Miller, 1996, p. 129f), this

would imply that the penalty function reflecting information about the plausible values of the

parameters (here the objective function terms related to the shadow price probabilities) would

receive less weight with increasing sample size.
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et al. (1996) describe the derivation based on normalised quadratic profit func-
tions and estimate a system of land allocation equations and supply functions

@�iðpi; q; ‘i jhiÞ
@pi

¼ yiðpi; q; ‘i jhiÞ: ð32Þ

The resulting system is linear, but the regression coefficients have to satisfy non-
linear constraints across equations. With our approach, no derivation of land
allocation equations is necessary. Instead, the optimality conditions (31) are
used directly in combination with (32) as data constraints in a GME approach,
as in the previous two examples. As long as the same statistical model and
econometric criterion are employed, the parameter estimates of this approach
must be equal to those obtained by estimating the behavioural functions,
because of the mathematical equivalence of the data constraints. This was
confirmed on the basis of a GME and a non-linear least-squares approach.
There are at least three advantages in estimating the model using the optim-

ality conditions even when a programming model is subsequently used for
simulation purposes. First, the choice of the functional form for �iðpi; q; ‘iÞ
is wider, because a closed form solution for land allocation functions is not
necessary. Second, and for the same reason, a more complex model structure
with more than one fixed factor or general constraints on land allocation (e.g.
quotas, base areas) is no longer an impediment to the econometric estimation
of the parameters. Third, formulating the resulting simulation model as an
explicit optimisation model allows the flexible incorporation of additional
relevant constraints on allocation for the simulation horizon without necessa-
rily obstructing the structural validity of the estimation results.
For this model also we performed simulation experiments based on an

appropriate GME estimator. We mirrored the Guyomard et al. (1996)
approach in the sense that we used only data on supply quantities and land
allocations, disregarding any observations on allocated input quantities and
the related input demand functions as data constraints. Reparameterising
the errors of these endogenous variables of the programming model in the
same way as for the CES production function model, we formulated the
GME program for the estimation of the profit function parameters as

max
w‘
it
;w

y
it
;hi ;�t

Hðw‘
it;w

y
itÞ ¼ �

XN
i¼1

XT
t¼1

w
‘0

it lnw
‘
it þ
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t¼1

w
y0
it lnw

y
it

" #
ð33Þ

subject to

@�iðpit; qt; ð‘oit � v
‘
iw

‘
itÞ jhiÞ

@‘i
� � ¼ 0 ð34Þ

@�iðpit; q; ð‘oit � v
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iw
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itÞ jhiÞ
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¼ ðyoit � v

y
i w

y
itÞ ð35Þ
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ð‘oit � v
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iw

‘
itÞ ¼ bt ð36Þ
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XS
s¼1

w‘
its ¼ 1;

XS
s¼1

w
y
its ¼ 1: ð37Þ

Again, for different sample sizes, artificially generated optimal supply quan-
tities and land allocations were disturbed by normally distributed errors
(with standard deviations of 10 and 2 per cent respectively of the mean vari-
able values) and estimation was carried out without the use of prior informa-
tion on parameters or functions of parameters. The Monte Carlo results are
given in Table 2. The change in the estimation errors (summed over all esti-
mated parameters of the profit functions) with sample size indicates consistent
estimator behaviour.
The large share of the variance in the mean squared error again indicates the

considerable potential of plausible prior information to improve estimator
precision for small sample sizes. However, we wish to focus here on another
issue of empirical relevance. Constraints on allocation, such as the land con-
straint, are frequently of the inequality type and across observations they may
sometimes be binding as equalities and sometimes not. As long as the data tell
us directly whether or not a constraint is binding for each observation, this is
handled simply by setting the shadow prices to zero a priori for observations
with non-binding constraints. But because of the noise in the data generation
process, it is conceivable that the measured variable quantities are misleading.
Apparently binding constraints might in fact not be binding for the true
quantities and vice versa. In this case, we must allow the estimated or
‘fitted’ variable values to satisfy the constraints either in equality or inequality
form. In principle, this can be easily accommodated by changing the land
constraint (36) to the inequality type

XN
i¼1

ð‘oit � v
‘
iw

‘
itÞ � bt ð38Þ

and adding the appropriate complementary slackness condition

XN
i¼1

ðbt � ð‘oit � v
‘
iw

‘
itÞÞ�t ¼ 0 ð39Þ

Table 2. Profit function model—Monte Carlo results without prior information

Measures Sample size (T)

4 5 10 20 30 50 100

SRMSE 2965 2888 1212 570 462 346 253

SABIAS 914 900 417 222 159 102 57

SSTD 2715 2672 1102 516 426 325 242

Source: own calculations.
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to the GME program. Given the discontinuous nature of �t, the numerical
stability might be hampered with solvers based on gradient methods. To
test this for the relatively simple example above, we changed the data genera-
tion process for the simulation approach as follows.
First, the available mean level of land was increased in such a way that,

on average, about 25 per cent of the optimal solutions of the data-
generating model did not use all the land. Second, we did not force the
errors disturbing the optimal land allocations to sum to zero, which
generally implies a non-zero difference between the sum of ‘observed’
land allocations and the available total quantity of land. Third, we used
equations (38) and (39) instead of (36) in the GME approach. All other
details of the simulation remained the same. The results are rather
promising: as in the above experiments, the SRMSE and SABIAS of hi
indicate consistent behaviour of the estimator. For more insight into the
technique’s performance with non-binding and binding resources, we
focus in Figure 4 on the finite sample properties of the estimated dual
values and on the ability of the approach to correctly identify the status
of the constraint.
The RMSE of the dual values is calculated as the square root of the average

absolute difference between the estimated and the true shadow prices across
all observations and repetitions. Both the ABIAS and the RMSE diminish
with increasing sample sizes. To provide further information we include, on
the right-hand axis, the percentage of estimated observations that are correct
concerning the binding or non-binding status of the land constraint. It is
shown that, for small sample sizes, the estimation procedure is able to
correctly identify binding and non-binding constraints for more than 85 per
cent of observations (which is significantly higher than the 75 per cent
obtained by assuming constraints are always binding). With increasing
sample size, the success rate approaches 100 per cent, indicating that the
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Figure 4. ABIAS and RMSE of the dual values and percentage of correctly identified

status of the constraints in the NQ model with inequality constraints.
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estimates converge to the true data generation process as the amount of data
information increases.

5. Conclusions

The paper introduces a general approach based on optimality conditions for
the estimation of programming models, and shows its theoretical advantage
compared with approaches based on PMP. The method simultaneously
allows the specification of more complex models and a more flexible choice
of functional form compared with previous estimation approaches of
duality-based behavioural functions with explicit allocation of fixed factors.
The procedure and application were demonstrated for three examples of
programming models. Monte Carlo simulations with a maximum entropy
criterion indicated consistent behaviour of the estimator. In this context,
the potential benefit from prior information on elasticities and shadow
prices in situations with small sample sizes, as well as the technical implemen-
tation, were also shown. Last but not least, the approach proved itself capable
of estimating model parameters across binding and non-binding constraints
in the data generation process.
Several limitations of the general approach, and of the specific applications,

presented in this paper need to be mentioned. First, there is no need to base
estimation on first-order conditions if the assumed optimisation model allows
for a consistent derivation from an indirect objective function. In this case,
well-established procedures for estimating systems of input demand and
output supply equations are available. Second, the stochastic specifications
of the models presented are somewhat limited, as the error could not be
interpreted as optimisation error in all cases. Finally, although the GME pro-
cedure used is appropriate for utilising available data and prior information,
the lack of easily applicable statistical test procedures might harm its pro-
spects for widespread use in the near future.
Apart from different applications to large, ‘real world’ profit-maximising pro-

gramming models, many other directions for future research can be identified:
extensions of the approach to multi-output production technologies with
non-allocable variable factors, or to expected utility models with risk, might
increase the empirical potential of these types of models. From an econometric
methodology point of view, there is still much scope for improving our current
knowledge of the GME approach; a more systematic investigation with respect
to the formulation of prior information and its impact on estimation quality in
small sample situations is desirable. Of course, the use ofGME is not a necessary
requirement for the estimation of programmingmodels inwell-posed situations.
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Appendix

Basic data set

The data set shown in Table A1, from Howitt (1995b), provides the differentiation of all

models presented with respect to outputs and inputs. Variable quantities are the means

of random variables and values of fixed variables for all Monte Carlo simulations.

Information on Monte Carlo simulation with QP model

True parameter values of Q:

Q ¼
500 �20 �10

�10 60 �2

�10 �2 200

2
4

3
5:
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Information on Monte Carlo simulation with CES model

Functional form of production functions and true parameter values:

yi ¼ f ðxik; bij jhiÞ ¼ �i
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Parametric restrictions enforced during estimation:

�i � 0; 0 � �ij � 1;
X4
j¼ 1

�ij ¼ 1

�i ¼
1

1� �i
� 0; 0 � �i � 1:

Information on Monte Carlo simulation with profit function model

Functional form of the profit functions and true parameter values:

�iðpi; q; li jhiÞ ¼ �0i þ �1i

pi
q2

þ �2i

q1
q2

þ �3i‘i þ 0:5�1i

�
pi
q2

�2

þ 0:5�2i

�
q1
q2

�2
þ 0:5�3ið‘iÞ2 þ �1i

piq1
q22

þ �2i
pi
q2

‘i þ �3i
q1
q2

‘i

Table A1. Base year data on California agriculture

Crop Price

($/bu)

Yield

(bu/acre)

Input allocation

Land

(106 acres)

Water

(106 acre ft)

Capital

(Index)

Chemicals

(Index)

Cotton 2.924 220 1.49 4.47 3.96 2.64

Wheat 2.98 85 0.62 1.14 1.98 1.32

Rice 7.09 70.1 0.54 3.08 2.94 1.96

Variable input prices ($) 10 10 10

Resource constraints 2.65 8.69

Source: Based on Howitt (1995b).
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where

h1 ¼

�01

�11

�21

�31

�11

�21

�31

�11

�21

�31

2
6666666666666666664

3
7777777777777777775

¼

�67:6571

115:023

1:914

87:836

24:854

1:167

�60:321

�9:391

144:229

�2:883

2
6666666666666666664

3
7777777777777777775

; h2 ¼

�02

�12

�22

�32

�12

�22

�32

�12

�22

�32

2
6666666666666666664

3
7777777777777777775

¼

�16:2746

�34:130

�0:176

49:817

23:552

0:607

�82:432

�4:232

135:553

�1:855

2
6666666666666666664

3
7777777777777777775

; h3 ¼

�03

�13

�23

�33

�13

�23

�33

�13

�23

�33

2
6666666666666666664

3
7777777777777777775

¼

�8:7735

4:656

�0:650

27:335

6:115

0:882

�53:635

�2:611

58:284

�2:446

2
6666666666666666664

3
7777777777777777775

:

Parametric restrictions enforced during estimation:

�1i > 0; �2i > 0; �i2 > 0; �3i < 0; �i1 < 0:

Parameters not estimated (only appear in profit function or input demand functions):

�0i; �2i; �2i:

Parameters not identified relative to shadow price of land (same as in Guyomard et al.

(1996), where those parameters are part of the composite estimated regression coefficients

in the land allocation equations) and therefore fixed at true values:

�31; �31:
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