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       While a difficult literature, we believe that research on models permitting flexible imposition of true regularity should expand. 

                                                                        -- William A. Barnett & Meenakshi Pasupathy, 2003 -- 

1. INTRODUCTION 

A lot of work in economics is characterized as follows: A researcher makes a set of behavioural 

assumptions, develops a theoretical model and derives functions of interest. An econometrician then estimates 

these functions. Finally, we use the resulting empirical model for policy analysis. The data provide the link 

between ‘economic theory’ and the ‘empirical model’. Two fundamental questions motivate this paper: is the 

data in line with economic theory, and how can we test for this relationship?  

One critical implication of economic theory is that behavioural assumptions manifest themselves in 

the form of uniquely defined ‘shape conditions’.  For example, if it is assumed that a firm shows the behaviour 

of a cost minimizer, then the dual cost function is concave and monotonically increasing in input prices.2 The 

potential gap between a well-established economic theory, on one side, and the empirical model on the other, 

is of great concern as reflected in the large literature on regularity preserving estimation procedures of the past 

30 years, see Gallant and Golub (1984), Diewert and Wales (1987) and Barnett and Binner (2004) for literature 

reviews on this in parametric functional forms.  For a literature review on the more recently developing non-

parametric shape-preserving methods, see Henderson and Parmeter (2009). Nonetheless, in empirical 

applications shape conditions are reported to be often violated and policy recommendations derived from such 

models are dubious at best; see the examples in Salvanes and TjØtta (1998), Griffiths, O'Donnell and Tan-Cruz 

(2000), Barnett (2002) or Blundell (2004). 

This paper reviews and presents a framework for estimation and inference in flexible parametric 

models to test for shape conditions, hence to test whether the behavioural assumptions of the underlying 

economic theory is reflected in the data. In reviewing estimators, we differentiate methods in  

• ‘standard econometric techniques’ which have been traditionally used to impose shape 

2 By the Shephard Lemma, a shape consistent dual cost function implies that the input demand system is downward 
sloping and the law of demand holds. Similar relationships between ‘behaviour’ and ‘shape conditions’ hold in 
many other contexts: if individuals are utility maximizers, then the indirect utility function is quasi-convex in prices. 
If firms maximize profits, then supply is upward sloping and the profit function is convex in output and input prices. 
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restrictions either locally (at one singular point of the regressor space) or globally (at the 

entire domain) and  

• the class of regional shape-restricting estimators (imposing the shape restrictions on a 

subset of the domain).  

Importantly, in many applications, economic theory has to hold over a continuous subset of the 

regressor space—in short: ‘region’. This region, first proposed by Gallant and Golub (1984), is defined as the 

‘empirically relevant region’, where the researcher is drawing inferences from—hence the area of the values of 

the regressor data itself and the area where policy simulations/forecasts are performed. With standard 

estimators, however, economic theory is formally tested either locally (at one singular point of the domain) or 

it is imposed globally (at the entire domain, typically leading to very restrictive functional forms). In contrast, 

regional testing has been ad hoc. For example, one could report the percentage of data points at which the 

estimated function violates shape conditions. This informal test statistic, however, is problematic. In fact, 

Figure 1 and 2 below will we show that a function violating shape conditions at all data points can be very 

“close” to economic theory. The reverse is also possible: one single violation can generate an empirical model 

completely out of sync with economic theory. This paper reviews and illustrates a formal testing procedure 

which outperforms such ad-hoc tests. 

The setup of the testing procedure is to first estimate a flexible parametric function unrestrictedly. If it 

satisfies all required shape restrictions over the ‘region’, then the estimated empirical model does not reject the 

assumed underlying economic theory. If, however, the estimated model violates shape restrictions, a second 

procedure follows: Building upon work by Gallant and Golub (1984), Terrell (1996) and Wolff et al. (2010), 

we re-estimate the function, subject to the (infinite number of) constraints that all shape conditions are satisfied 

within the connected ‘region’. Finally, the comparison of the regionally restricted estimate to the unrestricted 

estimate provides us with the test statistic. The intuition of the proposed test is simple: if we statistically reject 

the shape properties, then we reject the behavioural assumptions of the underlying economic theory as well.  

Hence, the objective is to test the gap between the empirical model and the economic theory.  
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We apply the discussion to the “Berndt and Wood” dataset—that has been extensively used to test the 

performance of new estimators in the econometric literature—estimating a flexible input demand system of 

four production factors to the U.S. In fact, it may even be the most frequently used dataset to test new 

techniques, see e.g. Berndt and Wood (1975), Berndt and Khaled (1979), Galant and Golub (1984), Diewert 

and Wales (1987), Barnett, Geweke and Wolfe (1991), Friesen (1992) and Terrell (1996).    

Here we take a fresh look at the Berndt and Wood data and make the following contributions. First, 

whereas previous applications only impose a subset of shape conditions, this is the first paper enforcing all 

shape conditions derived from conventional economic theory in the Berndt and Wood data3. Second, we 

discuss which estimators have the technical flexibility to impose all of the required shape conditions and find 

that ‘regional’ techniques outperform ‘globally’ regular estimators (as these latter can only impose a small 

subset of these conditions without overly restricting the flexibility of the functional form). Regional estimators 

also outperform local estimators as these do not guarantee regularity away from one singular point. Third, our 

empirical results demonstrate that estimator choice4 can lead to significantly different implications.  In 

particular, we find that estimates based on standard econometric techniques would have erroneously rejected 

economic theory, when evaluated over the ‘empirically relevant region’. In contrast, the newer class of 

regional regularity estimators provide strong support that the Berndt and Wood data is in fact consistent with 

economic theory, when evaluated over the same ‘empirically relevant region’. Fourth, we show how a new 

non-convex ‘string’ approach by Wolff et al. (2010) substantially (i) reduces computing time and (ii) increases 

model fit compared to the previous approach to define the region as one convex hypercube, as i.e. constructed 

by Gallant and Golub (1984) or Terrell (1996).   

Finally, one of the central parameters in the Berndt and Wood data is the elasticity of substitution 

3 We are not the first to impose multiple restrictions simultaneously. Parmeter et al. (2013) recently presents an 
estimation framework to impose a large number of constrains simultaneously using a constraint weighted 
bootstrapping method. In their application, Parmeter et al. (2013) impose seven monotonicity constraints on a 
Translog of estimated input distance functions.  
4 Estimator choice means choosing among the three classes of estimators: local, regional and global regularity 
imposing estimators. And within the class of regional estimators, it is choosing between the string approach and the 
convex hypercube approach. In addition the unconstrained estimator will be used for testing purposes and to provide 
a baseline in the empirical section.  
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between energy and capital.5 We show that estimated elasticities by standard econometric techniques can be 

dramatically different compared to the results produced by the regional approach. In particular, for the Berndt 

and Wood data we find that energy and capital are complements rather than substitutes, and we discuss the 

potential policy implications of this result. 

 The rest of the article is structured as follows.  Section 2 provides background on the theory of shape 

conditions and reviews local, regional and global regularity-imposing techniques. Section 3 compares these 

approaches in terms of model fit and theoretical consistency. Using the famous Berndt and Wood data, we then 

test for shape conditions and present estimation results regarding the distribution of the elasticity of 

substitution matrix. Section 4 concludes.  

 

2. BACKGROUND 

2.1 Shape Conditions 

This section first reviews the concept of shape conditions, with a specific example from duality 

theory, which will be then applied in Section 3 to estimate the Berndt and Wood data. An input factor demand 

system is estimated which is derived by Shephard’s Lemma from the dual cost function c*(p,y,t) = min{p`x | 

f(x,t) ≥ y}. Hence it is assumed that firms exhibit the behaviour of a cost minimizer. Inputs are denoted by x ∈ 

ℜN
+ and are transformed into output y ∈ ℜ¹+ by a smooth production function f(x,t), which depends upon 

technological change t ∈ ℜ¹+.  

Duality theory implies that c*(z), where z = [p,y,t] ∈ ℜ+
2+N, is  

HD1  : homogenous of degree one in input prices p ∈ ℜN
+  

Mp : monotone increasing in p 

  Cp  : concave in p  

Furthermore, if firms operate in a competitive environment, we have that   

5 Whether energy and capital are substitutes or complements is a fundamental question that has received much attention in 
economics, i.e. see Dasgupta & Heal (1979) or Apostolakis (1999). 
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Cy  : convex in y, and  

My  : monotone increasing in y.  

If a function satisfies all five properties HD1, Mp,y and Cp,y, we say that the function is ‘regular’ or 

synonymously, ‘well-behaved.’ To impose these regularity conditions, for many years the literature 

concentrated on the estimation of factor demand systems from globally regular generating functions, such as 

the Cobb-Douglas and the Constant Elasticity of Substitution. These first order flexible functional forms satisfy 

the restrictions of homogeneity, monotonicity, and curvature by well-known parametric restrictions; at the 

same time, these forms restrict the potential values for the second order effects prior to the estimation. This 

implies that the elasticities of substitutions—which are often key parameters in policy analysis—cannot be 

estimated, but are fixed. Moreover, this does not allow formal testing of the underlying economic theory 

because these first order flexible functions are strictly a subset within the class of functions generated by the 

theory.   

Due to the restrictiveness of first order flexible forms, the literature moved toward local approximation 

functions to the true data generating function itself, by series expansions. The result was the class of second 

order flexible functional forms, such as the popular Translog, Generalized McFadden, and the Generalized 

Leontief, providing the capability to attain arbitrary elasticities of substitution. Nevertheless, this increased 

flexibility came with a cost: sacrificing the guarantee of regularity.6 In fact, a series of studies (for a review, see 

Barnett, Geweke and Wolfe (1991)) demonstrated that these forms often have very small regions of theoretical 

regularity. 

6 For linear-in-the-parameters functional forms, Lau (1986) proved that flexibility is incompatible with global regularity 
with the imposition of both concavity and monotonicity. For example, a globally consistent second order Translog 
reduces the feasible parameter values of its squared terms to be zero, thus restricting the functional form to its first 
order series expansion, the Cobb-Douglas, which has constant cross elasticities of value one. 
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Figure 1: True versus approximation function 

 

 

 

 

 

 

 

Why do we need regularity preserving estimators? On one side Moschini (1999) raises the issue of whether 

one should really force the function to satisfy economic theory (or if one should rather let the data speak for 

itself and search for other (non-neoclassical) explanations). However, we argue, regularity-preserving 

techniques are indispensable for at least five reasons:  

(1) Any finite order flexible functional form c represents an approximation to the true function c*. If c* is 

regular and stochastic, then ĉ, estimated with some non-regularity preserving estimator, can fit outliers 

produced by c* and thus violate regularity (even though the determinist part of c* is regular!). 

(2) Even if c* was regular and deterministic, ĉ can oscillate around the true relationship. Because of its 

approximating nature, ĉ has a different tracking behaviour over its domain, so it does not lie completely 

above c*, but slightly next to it, as shown in Figure 1. This is perhaps the most important reason to use 

regularity-retaining techniques. Otherwise one risks erroneously concluding that data is ill behaved, 

whereas, in fact, the true data generation process is regular.  

(3) A regularity preserving point estimate is required for correctly specifying hypothesis tests. More on this 

issue is outlined in the empirical section.  

(4) Numerical iterations between parametric functions are often used to obtain non-analytic results (i.e. 

Even if the true data generating cost function c* is deterministic 

and regular (bold), the estimated approximation function ĉ 

(dashed) can be irregular.  The movement from c* to ĉ is not a 

simple parallel movement. Instead, (because realized (weighted) 

residuals sum up to zero) ĉ oscillates around c*. This phenomenon 

has been demonstrated with numerical examples using the 

Translog, the Generalized Leontief, and the AIM (Wolff et al. 

2010). 

 

cost 

price 
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iterations between a demand system and a supply system, until convergence).7 If such estimated functions 

violate curvature conditions, this can lead to local equilibria or numerical unbounded results.  

(5) In natural sciences, many technological relationships (i.e. acceleration of a rocket) are known to be shape 

restricted, but measurement error produces oscillating results. To differentiate between measurement error 

and functional form, shape preserving techniques are used.8  

2.2 The Domain 

Following the terminology as suggested in Wolff et al. (2010), regularity imposing methods can be 

categorized into three classes: (a) global, (b) local and (c) regional. Let us define ψ as a subset of the domain of 

the right hand side variable space ℜN+2
+ (here spanned by z). Whereas global refers to the unbounded positive 

orthant ℜN+2
+, local refers to one singular point, and regional refers to a connected subset of ℜN+2. Note that 

conceptually the local, global and regional approaches only differ in the way ψ is defined.  If Mp,y and Cp,y. 

holds ∀  z ∈ ψ, we say that regularity is imposed (i) globally if ψ = ℜ+
2+N, (ii) locally if ψ consists of one 

singular point, and (iii) regionally if ψ is some connected subset of ℜ+
2+N. 

 Global and local approaches are by far the most common standard econometric methods currently 

employed, because of their relative ease of computation. Instead the regional approach is more demanding 

both computationally and because the researcher needs to explicitly specify the connected set ψ. This regional 

connected subset, first proposed by Gallant and Golub (1984) represents the ‘empirically relevant region’, and 

is defined by the model analyst. In particular it is assumed that it is known prior to the estimation at which 

ranges of the data the model shall generate forecasts.9 Note, for the regional approach it is not particularly 

7 Note that these set of models (i.e. Computational General Equilibrium (CGE) models or partial equilibrium 
models) do require well-behaved parametric functions. Hence, while shape imposing techniques have recently 
garnered much attention in the nonparametric literature (Henderson and Parmeter, 2009), shape conditions in 
parametric functions will continue to be of interest in such settings.  
8 Repeatedly it had been argued that a ‘regular model’ may forecast better out of sample - although their ‘in sample’ 
fit statistics are inferior compared to an irregular model. This is an interesting point but not a general result. For a 
discussion on this, see Edwards and Terrell (2004). 
9 If the estimated function will be used in the context of a larger simulation model, numerical requirements may lead 
to a larger set ψ, sometimes extending beyond the initial range of interest in economic analysis. For example, to 
guarantee the proper functioning of iterative algorithms used in partial equilibrium models, the set ψ has to 
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important if the function is irregular immediately outside the boundary of ψ because inferences will not be 

drawn from those regions. The regional approach can offer important advantages over the local approach 

because it imposes theoretical consistency not only locally, at a given singular evaluation point, but also over 

the entire empirically relevant region of the domain associated with the function being estimated. The method 

also provides benefits relative to the global approach, through higher flexibility derived from being less 

constraining, generally leading to a better model fit to the sample data. In the empirical Section 3 we test for 

these claims, comparing local, regional and global approaches.  

2.3 Shape imposing estimators  

2.3.1. The Inequality Constraint Function 

Any estimator can be described as maximizing some statistical criterion function subject to a set of 

constraints. This subsection first defines the constraining function for shape conditions. Note that the two 

curvature conditions Cy and Cp (in short Cy,p) and the two monotonicity conditions My,p must hold on a 

connected subset ψ ⊂ ℜ+
2+N of the price × output × time space. The restrictions Cy,p and My,p can hence be 

characterized by H = 4 vector-valued-functions ih(z;β), h = 1,…,H, whereby the restrictions hold whenever, for 

a given β, i() is nonnegative for all z in the relevant region ψ, 

i(z;β) ≡ [i1,i2,…,iH] ≥ 0  ∀  p,y,t ∈ ψ. 

Hence for monotonicity and curvature, define the following four sets of inequality constraints:  

i1 = ∇pc ≥ 0,                i2 = ∇yc ≥ 0,               i3 = – eig[∇ppc] ≥ 0,               and               i4 =  eig[∇yyc] ≥ 0, 

whereby ∇j indicates the derivative with respect to variable  j and eig[] computes the eigenvalue of the Hessian 

∇jjc, which checks whether the curvature of c is concave.  

2.3.2. Local Regularity Preserving Estimator 

An estimator of local regularity maximizes some statistical criterion function (i.e. minimizing the sum of 

squared error distances) subject to the constraint that i(z;β) ≡ [i1,i2,…,iH] ≥ 0 at one point z = zo of the regressor 

encompass the range of values occurring in the numerical procedure. 
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space.  Using this approach, Ryan and Wales (1998) yield functional forms with a high degree of flexibility. 

However, this approach does not eliminate the risk that regularity is violated near the selected point.  Finding 

the optimal set of local constraints for a given dataset can be time consuming and lead to complications for 

statistical testing and verification.   

2.3.3. Global Regularity Preserving Estimator 

Imposing global regularity requires that shape conditions hold at all values of the regressor space in ℜN+2. 

This is typically done by now well-known parametric restrictions described e.g. in Diewert and Wales (1987).  

The guarantee that the whole domain is consistent with economic theory comes at the cost of sacrificing 

flexibility and model fit.  For example, imposing global regularity on the Generalized Leontief cost function 

eliminates the possibility of complementary inputs. Further, monotonicity restrictions have traditionally been 

omitted because (as proven by Lau, 1986) estimators imposing both monotonicity and concavity globally 

restrict the valid parameter space of the functional form such that it loses the property of second order 

flexibility, and therefore offer no advantage to functions with only first order flexibility such as CES and 

Cobb-Douglas. Barnett (2002) and Barnett and Pasupathy (2003) show how omission of global monotonicity 

can lead to very misleading results in empirical applications.   

2.3.4. Regional Regularity Preserving Estimator 

The regional regularity approach was first proposed by Gallant and Golub (1984). Here a statistical 

criterion function is maximized subject to an infinite number of constraints i(z;β) ≡ [i1,i2,…,iH] ≥ 0  ∀  p,y,t ∈ 

ψ which have to hold at any point within a convex hypercube ψ. Imposing regional regularity generally leads 

to a better statistical fit of the data to the model, compared to the global regularity approach. However, Gallant 

and Golub (1984) did not demonstrate the tractability of their double inequality constrained optimization 

technique and it seems that empirical implementation can be formidable with optimization tools currently 

available. It was more than a decade until Terrell (1996) advanced ideas relating to the empirical application of 

regional regularity. Instead of explicitly using a constrained optimization algorithm as in Gallant and Golub 

(1984), Terrell (1996) decomposed the problem into a series of steps: First, the convex set ψ is approximated 
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by a dense grid consisting of thousands of singular regressor values. Secondly, using a Bayesian framework, 

an unconstrained posterior distribution of the parameter vector β, conditional on the endogenous variable y, 

pu(β|y), is derived that does not incorporate the regularity conditions. Thirdly, a Gibbs sampler is used to draw 

parameter vector outcomes from pu(β|y), and an Accept-Reject algorithm is applied to assess regularity for 

each outcome at all grid points within ψ. Finally, point estimates are derived and inferences are drawn based 

on the set of regular parameter vectors and its truncated posterior distribution. Further details of the method are 

provided in part I of the Appendix. This procedure has two challenges: (a) Due to the approximation of the 

relevant regressor space by the grid, the possibility cannot be eliminated that the function is irregular for some 

non-grid points. In this sense this technique does not compel regularity on a connected set but imposes local 

regularity at multiple singular points. (b) The Gibbs simulator requires sampling from the entire support Θ of 

the unconstrained posterior pu(β|y). This can be time consuming if, as is often the case in practice, the regular 

region for β is only a small subset of Θ (Terrell 1996). Aiming to address theses challenges (a) and (b), Wolff 

et al. (2010) developed an alternative estimator that builds upon Terrell (1996) to impose regional regularity, 

see Box 1. The main differences are as follows: Their Metropolis-Hastings Accept-Reject Algorithm 

(MHARA) simulator decreases the computing time by reducing the amount of regularity checks because it 

does not need to sample over the whole unconstrained posterior (which includes potentially large regions of 

irregular parameter draws), but it samples directly from the regular support ΘR|ψ = {β: i(p;β) ≥ 0 ∀ z ∈ ψ}. 

Second, a mode estimator is proposed that is shown to increase the model fit (compared to the previous 

posterior mean point estimates). Third, Wolff et al. (2010) advocate to impose regularity on non-convex sets of 

the domain, ψstring, referred to as the string approach.10 Wolff et al. (2010) show in simulations that this greatly 

enhances the model fit, particularly in cases where a higher dimensional point-cloud of regressor data appears 

as non-convex. In Wolff et al. (2010), however, no empirical application has been offered using real world 

10 The construction of the approximation grids of the hypercube and the string approach are detailed in Table 2 

below and in Appendix II.  
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data to verify these improvements. This paper is the first to do so in Section 3.  

Box 1: Step by step procedure to impose regional regularity–adopted from Wolff et al. (2010) 
Step 1 Estimate y = f(P;β) + ε without imposing inequality constraints to obtain the unconstrained estimate 

bu of β as well as the estimated L × L covariance matrix cov(bu). 

Step 2 Define i() that characterizes the regularity conditions for the function being estimated. 

Step 3 Define ψ. If the proposed region is not convex (string approach), define a sequence of I convex 
subsets ψi such that ψ = 1

I
ii=

ψ


.  

Step 4 Initialize the Markov Chain with a regular parameter vector: If bu ∈ ΘR, set b(0) = bu else b(0) = 0. Set 
j = 0. 

Step 5 Generate a candidate b(*) by the proposal distribution p(b(*);b(j)). 

Step 6 If b(*) is irregular at the vertices of ψ, set r=0. 

Step 7 If b(*) is regular in ψg, calculate r = p(b(*)|y,ψ)/p(b(j)|y,ψ), else set r=0. 

Step 8 if r > 1, b(j+1) = b(*) else if Uniform(0,1) ≤ r, b(j+1) = b(*), else b(j+1) = b(j). 

Step 9 Increment j by j = j+1. Go to step 5, until j = J+S, whereby S
j

j
1

)( }{ =b  are the burn-in draws to be 

discarded after the final loop such that SJ
Sj

j +
+= 1

)( }{b  are the outcomes to be considered for constructing 

p(β|y,ψ). 

Step 10 Analyze p(β|y,ψ), i.e. calculate point estimates and perform inferences.  

 

 

3. EMPIRICAL ILLUSTRATION 

Background to the Application of Estimating a Flexible Input Demand System 

This section first briefly motivates the empirical importance of estimating cross-partials (such as the 

elasticity of substitution between energy and capital) using second order flexible functional forms.11 Climate 

change concerns drive many countries to debate over imposing a tax on energy use to reduce CO2 emissions. 

To assess the costs and benefits of such an energy tax policy, we estimate the own price elasticity of demand 

for energy, but also require information on cross-price elasticities that describe the effects on important 

markets that are potentially linked to energy. Firms facing a carbon tax could substitute away from energy 

11 Again, note, first order flexible forms do not allow to numerically estimate the cross partial, but would a-priori 
determine the value of the cross-partial. For example using the Cobb-Douglas a-prior determines that the elasticity of 
substitution is equal to one. Also, global imposition of all shape conditions leads to the same problem (see Lau,1986).  
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towards other inputs such as capital and labor—which may be less polluting but more costly. To this end, 

estimated demand systems have provided key ingredients to answer many important questions in production 

analysis (Chambers 1988, Griffiths, O’Donell and Tan Cruz 2000, Kumbhakar and Tsionas 2005), policy 

studies and welfare analysis (Evans and Heckman 1984, 1986, Koebel, Falk and Laisney 2003), as well as in 

the debate on the sources of economic growth (Mankiw, Romer and Weil 1992, Hsieh 2000, Antras 2004).  

The empirical illustration contains 3 subsections: Section 3.1, re-estimates the demand system for four 

production inputs to the U.S. manufacturing sector using the Berndt and Wood (1975) data set for capital (K), 

labor (L), energy (E), and materials (M). This KLEM dataset has been reported to violate regularity conditions 

implied by economic theory. For that same reason, however, the KLEM data have been applied to a 

considerable number of studies imposing regularity techniques (i.e. Berndt and Wood 1975, Berndt and 

Khaled 1979, Galant and Golub 1984, Diewert and Wales 1987, Berndt, Geweke and Wolfe 1991, Friesen 

1992, Terrell 1996), providing a substantial foundation on which to investigate and to compare the 

performance of alternative estimators. 

Does estimator choice (described in Section 2) has any policy importance? For instance, does the local 

approach produce estimates that are significantly different from the global or regional approaches? To 

exemplify, Section 3.2 looks at the elasticity of substitution between capital and energy, a parameter that has 

attracted a great deal of attention in the last decades (see e.g. Apostolakis 1990). Finally, section 3.3, asks 

whether the KLEM data are consistent with ‘duality theory’ and we outline a procedure for testing this.  

The Berndt and Wood data have been described in more detail in many places in the literature (e.g. 

Berndt and Wood (1975), Berndt and Khaled (1979), Gallant and Golub (1984)). Table 1 provides summary 

statistics of the annual data from 1947 to 1971. In particular the min/max values of the right hand side price 

variables will be considered below for the construction of the various ψ sets. 
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Table 1: Summary statistics of the Berndt and Wood data set from 1947 to 1971 

 input quantities input prices output 

 K L E M pK pL pE pM y 

mean 20.45 106.07 16.78 237.56 1.18 1.77 1.35 1.30 313.80 

std 7.77 43.59 5.54 85.14 0.19 0.46 0.12 0.14 87.67 

min 8.58 45.10 7.76 112.35 0.74 1.00 1.00 1.00 182.83 

max 34.11 190.26 29.48 407.71 1.50 2.76 1.65 1.55 466.83 
Note: Variables are produced using index numbers and deflators. For details on the data construction see Berndt and 
Wood (1975) and Berndt and Khaled (1979). 
 
3.1 Comparing Shape Imposing Techniques – An Illustration using the Berndt and Wood Data 
 

The main purpose of the following eight sets of estimations is to assess potential (dis)advantages of 

the regional estimation versus the standard econometric techniques (the local and the global approaches) both 

in terms of model fit and the propensity for regularity violations. Performance statistics of various estimators as 

applied to the second order flexible Generalized Leontief cost function 

c(z;β)  =   + bipi  +  bi tp i ty + t a ip i  + y 2 β ip i  + yt 2 γ ip i  

with bij = bji, are displayed in Table 3. In order to be able to directly compare our results with previous studies, 

we use the exact same specification of the demand system as in Diewert and Wales (1987), and in Terrell, 

(1996).12 Hence the N estimated equations are  

x/y  = ∇pc(z;β)/y  + u .           (1)  

It is assumed that the T × 1 error vectors un, n = 1,…,4 are contemporaneously correlated, such that the 

estimating equations can be written in form of the Gaussian seemingly unrelated regression (SUR) system with 

t = 1,2,…T. For details on the specification see Diewert and Wales, 1987 and Terrell, 1996.  

Economic theory restricts the Generalized Leontief cost function to be Mp, My, Cp and Cy. In general, 

economists are well aware of these, imposing all four of these conditions when estimating first order flexible 

12 For a motivation of this particular specification see Diewert and Wales (1987) and Terrell (1996). In particular, all 
right hand side variables are assumed to be exogenous. This seems to be a standard approach in this literature:  
Except for the Berndt et al. articles in the seventies, none of the above papers estimating the KLEM input demand 
system uses instruments. For a justification of this, see the discussions by Diewert (2004), Barnett and Binner 
(2004), and Antras (2004). A possible extension is to estimate the system in the context of an error correction model 
(Friesen, 1992).  
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functional forms (such as a Cobb-Douglas). In contrast, the standard practice is that only a small subset of 

these conditions is enforced when using the Generalized Leontief or any other second (or higher) order flexible 

form. In particular, the three conditions Mp, My and Cy conditions have rarely been considered. A remarkable 

exception of explicitly imposing both Cp and Mp (but not My and Cy) is Terrell (1996), whose results are shown 

below for comparison.  

The fact that the previous literature contemplated subsets of the regularity conditions cannot be 

justified from the perspective of economic theory. Why should a violation of monotonicity be less harmful 

than a concavity violation? The omission of regularity may be explained by the previous lack of standard 

estimators that have the ability to maintain regularity over all conditions. Such a gap between economic theory 

and the empirical model is problematic for the interpretability of the results (and is especially worrisome if one 

wishes to derive any policy conclusions for the U.S. manufacturing sector, which accounts for about 20% of 

the GDP).  To our knowledge, this paper is the first study systematically taking into account overall regularity 

including My and Cy when using flexible functional forms.  

 Definitions for ψ are first provided in Table 2, separating in column (1) the approaches into ‘standard 

econometric techniques’ (for ‘unconstrained, ‘local’ and ‘global’ and the ‘regional’ approach) versus the 

‘regional approach’. Column wise Table 3 displays the regression results, with the columns again indicating 

the various estimation approaches (unconstrained to global). In addition in the columns of Table 3, the symbols 

in parentheses indicate which shape conditions are imposed. To provide an example, column (4) and (5) of 

Table 3 display the sympbol ψ□p
i(Mp,Cp), which implies that concavity and monotonicity is imposed with 

respect to p on the convex hypercube. In Table 2, this construction corresponds to row (4) (for i = 1) and row 

(5) (for i = 2). Note that this particular set has a Lebesgue measure of zero because it does not expand into the 

dimension of y and t. Instead, if all four regularity conditions are imposed, a simplified notation uses the 

indicator ‘all’, which corresponds to row (6) of Table 2. In Table 3, for each estimation approach we display in 

the columns the results of both point estimates, the mean of the regularity posterior distribution, and the mode. 

As in Terrell, after each estimation, the regularity conditions are evaluated at the smaller set ψ□
1 and larger set 
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ψ□
2 as indicated in the respective rows of Table 3. In particular, the smaller hypercube Ψ□p

1 = {p: p ∈ [1.0, 

1.5]} is defined such as it covers most but not all of the observations in the dataset, while the larger set Ψ□p
2= 

{p: p ∈ 3
1k=× [0.5, 3.0]} covers all data entirely plus areas of the regressor space that are intended for 

subsequent policy forecasts (i.e. to simulate the introduction of a tax on prices in the range from 1.5 to 3.0, or 

to simulate a subsidy on the range of prices from 0.5 to 1.0). Violations of regularity conditions are expressed 

as the percentage of grid points where violations occur, whereby the grids are constructed as described in 

Table 2, and for details please refer to Appendix II.  
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Table 2: Regularity imposing sets  

Approach Row Definition of ψ Comment 

St
an

da
rd

 E
co

no
m

et
ric

 T
ec

hn
iq

ue
s 

Unconstrained (1) ψ = Ø: 

Mp,y and Cp,y is not imposed. 
‘Unconstrained’ refers to the ‘inequality 
constraints’ only: Symmetry and HD1 is 

imposed by parametric equality 
restrictions. 

Local (2) ψ = z1 

z1 is  the first observation in the sample 
corresponding to the year 1947. z1 is 

used because this matches the tables in 
Berndt and Wood (1979), Diewert and 
Wales (1984), Barnett et al., (1991) and 

Terrell (1996).13 
Global (3) ψ = ℜ+

2+N Nonnegative orthant of all right hand 
side variables of z. 

Re
gi

on
al

 

Cube14 approach 

(4) Ψ□p
1 = {p: p ∈ [1.0, 1.5]} 

This was chosen by Terrell (1996). It 
does not cover the entire empirical 
relevant data space. Some observed 

prices lie outside the [1.0, 1.5] interval, 
see min/max values in table 1.*  

(5) Ψ□p
2= {p: p ∈ 3

1k=× [0.5, 3.0]} This set was chosen by Terrell (1996). It 
ensures that ψ□p

2 covers all observed 
prices and beyond.*  

(6) 
Ψ□z

i (‘all’)= 

{z∈ψ□p
i×[ymin, ymax]× [tmin, tmax]} 

ψ□z
i, i ∈ {1,2}: These sets expand ψ□p

i 
over the remaining dimensions t and y.  

String approach (7) 
 

ψstring = 
26

1 it=
ψ

  

ψstring covers 26 = T+1 points in ℜ+
2+N  

by connecting straight lines ψi between 
the right hand side variables mean, zM, 

and each of the T observations. I 
approximate each line ψi by ψig by 
taking 10 equidistant grid points 

between pM and the ith observation zi, 
leading to 1+(F-1)T = 226 grid points.   

* This set has Lebesgue measure of zero because the set does not expand into the dimension y and t. 
  

13 In case of the Berndt and Wood dataset, imposing the regularity conditions at other points in the sample space (z2 to 
z25) does not essentially change the empirical results. This conclusions, however, is not a general result but is entirely data-
driven.  
14 In this paper all grid sets ψ□”

ig are constructed with F = 10, as in Terrell, 1996. For details see Appendix II.  

 

 
 

16 

                                                 



Table 3: Generalized Leontief Input Demand System, estimated with 8 different approaches 

Model Performance 
Statistics: 

Regularity Violations/ 
Fit Statistics 

 Estimation Approach  
Unrestricted Global Local Regional 

1 2a 2b 3 4 5 6 7 8 

Restricted domain with 
shape conditions imposed 

in parenthesis 
Ø (‘none’) ℜ+

2+N (Cp) ℜ+
2+N (‘all’) z1(‘all’) ψ□p

1(Mp,Cp) ψ□p
2(Mp,Cp) ψ□z

1(‘all’) ψ□z
2(‘all’) ψ string(‘all’) 

evaluated 
at 

% of shape 
violations at 
grid points 

mode mean    mode    mode(bgr) mean  mode mean    mode mean    mode mean   mode mean  mode mean    mode 

ψ□
1 

 

Cp violations 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Mp  violations 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Cy violations 4.0 25.1 33.4 0.0 0.0 0.0 0.0 0.0 0.0 53.0 0.0 0.0 0.0 0.0 0.0 0.0 

My  violations 0.0 2.0 11.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

ψ□
2 

Cp violations 100.0 0.0 0.0 0.0 27.1 27.1 16.1 27.0 0.0 0.0 15.2 27.0 0.0 0.0 27.4 27.4 

Mp  violations 3.1 45.8 0.0 0.0 5.0 5.0 5.2 5.3 0.0 0.0 3.6 5.3 0.0 0.0 4.9 5.8 

Cy violations 31.2 33.4 25.1 0.0 32.9 32.9 34.4 33.3 29.7 50.5 1.6 33.3 0.0 0.0 0.0 32.8 

My  violations 1.3 11.3 2.0 0.0 1.8 1.8 1.7 1.9 1.8 0.9 2.4 1.9 0.0 0.0 4.8 2.4 

Generalized Variance of the Fit1 1.44 0.52 0.52 0.27 1.26 1.26 1.18 1.26 0.74 0.76 1.14 1.26 0.17 0.27 1.20 1.26 

Note: The model fit is calculated by Generalized Variance of the Fit. See e.g Barnettt (1976). Here it is defined as 100•|Σ|-1.  The statistic is proportional to the ordinate value of 
the unconstrained posterior p(b|y,∅) evaluated at the respective point estimate. Due to the choice of priors here it is proportional to the likelihood value of the unconstrained 
Maximum Normal Likelihood regression. 
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3.1.1 Unconstrained estimation  

In the first column of Table 3, the demand system is estimated by iterated SUR unrestrictedly. Firstly, 

compared to any other columns, the unrestricted estimate, bu, provides the best model fit statistics but c(z;bu) 

violates the regularity conditions everywhere, both in ψ□
1 land ψ□

2 leading to, among other things, a failure of 

the fundamental law of demand.15 Contemplating these poor regression results, a researcher could now pursue 

a multitude of directions, until something more consistent is obtained, i.e. trying other functional forms or 

applying the data to another economic theory. However, if goalposts are changed in an ad hoc manner, such 

procedures can be rife with statistical testing and verification problems. Hence other estimation approaches 

leading to a well-behaved economic model are required to test this hypothesis.  

3.1.2. Global Approach  

The global approach to impose concavity is probably one of the most common techniques, when 

estimating flexible input demand systems. In the case of the Generalized Leontief, this unfortunately allows the 

cost function to model substitutes only (Diewert and Wales 1987). Because in the KLEM data at least energy 

and capital seem to have a stark complementary relationship, maintaining global concavity reduces the model 

fit. Moreover, the global imposition of concavity is not sufficient for overall regularity. In fact, all remaining 

conditions are violated as can be seen in column 2a. Now, applying the global approach not only to Cp but to 

all regularity conditions (estimated by (1) with bij
u=0, i≠j) a-priori fixes the elasticity of substitution estimates 

to 0.  Here, as displayed in column 2b, such a procedure performs very poorly in terms of model fit because 

this globally regular estimate bgr emerges from the ‘small’ parameter subset ΘR|ℜ+
2+N ⊂ ΘR|ψ. In conclusion 

our empirical results indicate that the global approaches are extremely restrictive, a finding that agrees with the 

results in Diewert and Wales, 1987, Terrell, 1996 and the simulation study in Wolff et al. 2010.  

 

15 For comparison, this estimation exactly repeats the unrestricted estimation of Diewert and Wales (1987: table II) and 
Terrell’s (table 3: 1996).   
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3.1.3 Local approach  

The third column displays results from local imposition of overall regularity. As expected, here the 

model fit is inferior when compared to the unrestricted approach, but is superior to the global approach. 

Unfortunately, the local approach does not guarantee that regularity is satisfied in the relevant empirical area, 

leading to a high percentage of over 33% of violations of Cy at ψ□
2.  One has to be careful, however, with the 

interpretation of these percentage statistics: On one side, violating shape conditions at 100% of the data points 

does not necessarily imply that the estimated model is “very far” from a good model. And on the reverse, a 

single violation of one grid point could lead to extremely poor results. The latter point is illustrated in Figure 2.   

Before proceeding to the regional approach, it is worth noting that the local approach does not lead to 

any violation in ψ□
1. Hence, if one is solely interested in ψ□

1, one could stop here, because the below regional 

approach of ψ□
1 in the next Section does not improve the estimation (compare upper panel of column (6) to 

column (3)). Note, however, that ψ□
1 does not cover all the relevant data points (compare the min/max values 

in Table 1 and the definition of ψ□
1 in Table 2).  

Since neither the unconstrained, local nor the global approach produces a well-behaved flexible 

demand system at all data points, we now turn to the regional approach.   

 

Fig 2: Illustration of an irregular cost function violating the shape restriction at one grid point 

Illustration of a cost function regular 
within ψ1 and within ψ2.  The overall 
model is irregular, however, on the 
domain ψ = ψ1 ∪ ψ2 although only 
one grid point is violated (here 
indicated on the domain by the dotted 
line).  Overall regularity is violated 
because cost must not decrease with 
rising input prices.   
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3.1.4 Regional Regularity 

First Terrell’s (1996) estimation is replicated, i.e. using the Gibbs accept-reject simulator and the same 

ψ-sets as defined by Terrell. He applied this method to impose Mp and Cp. This successfully leads to regularity 

preserving results if interested in the function’s domain ψ□z
1. In contrast, on the domain ψ□z

2, the constraints 

with respect to y would be violated (see column 4 and 5 in Table 3). This shows that there is a need to impose 

these other conditions as well.  

We now turn towards the MHARA estimation method imposing all regularity conditions on any set ψ 

of interest. Hence, as shown in the columns (6) and (7) regularity holds in ψ□z
1 and ψ□z

2.  We display the results 

for both, the mean and the mode of the posterior. In case of column (6), the mode increases the model fit (as 

measured by the likelihood value) by over 10% (from 1.14×10-2 to 1.26×10-2). The percentage increase is even 

more dramatic in the case of imposing the regularity conditions on the larger set ψ□z
2, in column (7), achieving 

an increase in model fit by 43.6% from 0.17 to 0.27. These results are consistent with Lemma 1 of Wolff et al. 

(2010).  

The String Approach  

So far, we only have described the approaches based on a convex cube ψ□. A motivation for the 

KLEM data set to further investigate in non-convex sets for ψ is probably best described by Gallant and 

Golub, 1984: ‘The exogenous variable [pt and yt] for t  = 1947,…,1971 lie in a five dimensional space and can 

be projected into a three dimensional space with a negligible loss of information…The projected point cloud 

has an irregular shape. It is a sort of a fat rope lying mostly on the ground in the shape of a tilde (~) with the 

two end-points and the middle elevated.’ This description indicates that constructing ψ□ as a convex cube 

(which includes all the data points) may lead to an unnecessary voluminous set containing relatively little 

useful data ranges. A simple construction rule of a non-convex set containing all the KLEM data is described 

in Table 2 and labelled as the ‘string approach’. Comparing the regular parameter support of the string 

approach versus the cube approach shows that the former is a parameter superset of the latter, ΘR|ψstring ⊃ 

ΘR|ψ□z
1, benefiting the resulting flexibility property of the functional form and leading to a higher model fit, see 
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Lemma 1 of Wolff et. al (2010). In the application of column (8) (String approach), the model fit strikingly 

increases from 0.17 to 1.20, compared to the hypercube approach in column (7). Also, note that comparing the 

mean of the string approach to the mode leads to an additional improvement of the model fit of about 5.3%.  

The string approach has potential important advantages because: (a) it represents the method which is 

to the largest possible extend ‘data driven’, (b) it leads to a well-behaved demand model and (c) with 226 

regularity checks, it is computationally much faster than the regional regularity preserving cube method, that 

checks one million times.16  

Summarizing Table 3, unconstrained and local regularity estimates increase the model fit in all 

specifications at the cost of violating regularity within ψ. This produces estimation results that are problematic 

in terms of economic interpretation and further policy analysis. Imposing regional regularity solves this 

problem and significantly increases the model fit when compared to the global approach. Moreover, it is 

relevant for model fit to use the mode instead of the mean. Finally, the string technique proposed by Wolff et 

al. (2010) reduces computing time, making the regional regularity approach more tractable for empirical 

analysis. Instead of the full evaluation grid consisting of over one million points, only a maximum of 343900 

points have to be evaluated for the cube approaches. Furthermore, for the string approach only 226 points have 

to be assessed. This significantly decreases the computational burden when compared to previous approaches. 

Whether, these advances have any consequences for our estimation results will be investigated in the 

following subsection with respect to the U.S. matrix of the elasticity of substitution of input factors.  

3.2 Elasticities 

We examine the estimated marginal posterior distributions for input demand elasticities ∂xi/∂pj·xi/pj. Table 4 

reports the means, modes and standard deviations of these density functions. For the purpose of analyzing the 

potential effects of an environmental tax on energy use, here we are interested in the capital-energy elasticity. 

The long-run growth potential of the manufacturing sector depends crucially on the magnitude of this 

16 With the Q*-grid construction approach we need about 30% of the original Q-grid computing time. In comparison the 
string approach estimation is faster requiring less than 0.05% of the original computing time.  
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parameter (Dasgupta and Heal, 1979). In particular the question of whether capital and energy are 

complements or substitutes has received much attention (see e.g. Apostolakis 1990).17 

17 If they are substitutes, then an increase in energy taxes would lead, ceteris paribus, to an increase in the capital stock, 
potentially benefiting the sector in the long run. In this case, energy conservation policies promoting new energy-saving 
physical capital would be predicted to have the desired effect. However, if they are complements, then rising energy prices 
would adversely effect capital formation and, hence, such policies could be counterproductive.  
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Figure 3: Posterior distributions of the elasticity of substitution between energy and capital  
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Figure 3 presents results of the cross price elasticity of energy with respect to capital eEK. The global concavity 

approach produces the far most right distribution having a mode value at eEK = 0.0145 (see Table 4) suggesting 

that capital and energy are weak substitutes. Instead, the entirely data driven ‘unconstrained’ approach suggests 

that capital and energy are complements with eEK = -0.1315. Since the unconstrained estimate however 

violates duality theory, we turn towards the regional approach. Here, the regularity preserving string approach 

produces the distribution only slightly to the left of the unconstrained approach with the mode at eEK = -0.1412. 

Alternatively, the cube approach produces a distribution, which is likely to be biased towards zero, as the 

estimated function is estimated subject to a much larger set of constraints. 18 

Table 5: Estimated changes in capital stock in millions of U.S. dollars in manufacturing sector due to 10% 
increase in energy price 

  Global concavity approach String approach 

 year (lower 5% 
bound) point estimate (upper 95% 

bound) 
(lower 5% 

bound) ´point estimate (upper 95% 
bound) 

elasticity eEK  (0.00102) 0.01450 (0.04007) (-0.20928) -0.14120 (-0.07555) 

change in  
capital stock  

1947 (1.0) 13.5 (37.3) (-194.8) -131.5 (-70.3) 

2001 (45.6) 646.0 (1785.2) (-9323.9) -6290.7 (-3365.7) 

NOTE: In the first row calculations are based on the year 1947. This represents our results comparably to the tables and 
figures provided in previous studies (such as Berndt and Wood (1979), Diewert and Wales (1984), Barnett et al. (1991) 
and Terrell (1996)). Numbers in parenthesis provide the 90% coverage probability intervals of respective changes and 
elasticities. Intervals are computed by using 100,000 MHARA simulator outcomes.  
 

18 With respect to Figure 3, Kolmogorov-Smirnov tests reject the null that the distribution functions of cross price elasticity of energy 
with respect to capital eEK are equal to each other.  

global approach:   ---------  

cube approach:     − − − − 

string approach:   
_________ 

unconstrained:      
……......... 

 

eEK 
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 Table 5 illustrates the substantial consequences of using these different estimators. The standard 

global concavity approach would imply that a 10% increase in energy price leads in the U.S. 

manufacturing sector to a 14 million U.S. dollars increase in capital formation.  Instead using the 

preferred MHARA string approach predicts a significant decrease of the capital stock by about 132 

million dollars. The second row uses more recent 2001 data provided by the Bureau of Labor Statistics. 

Due to the use of the different estimators, the same calculations lead to an absolute change in capital stock 

of about 7 billion U.S. dollars (= 6.3 + 0.6). Given that in the year 2001 the total value of the capital stock 

in the manufacturing sector amounts to 446 billion dollars, the change of 7 billion solely due to the use of 

different estimators is alarming.  

Two more observations are worth noting. First, comparing the variances of the distributions, we see 

that a robust pattern arises: The larger the set ψ, the smaller is the sample variance of the posterior distribution. 

Although one might be attracted by an estimator with a small variance, choosing the estimator on this basis 

would be very misleading! As can be seen from Table 3, the variance of the estimator is rather inversely 

related to the model fit statistics. Again, see Lemma 1 of Wolff et al. (2010) for a simple proof, that expanding 

the regularity imposing set, ceteris paribus, decreases the supremum of any statistical criterion functions 

measuring the model fit.  

Secondly, from Figure 3, the pattern suggests that the starker the restrictions, the greater is the 

difference in the relative positions between the unrestricted approach and the restricted approaches. One 

therefore could conclude that, the unrestricted approach might be a good ‘approximation’, since it seems to be 

close to the string approach. However, such a conclusion is misleading too. For example, the own price 

elasticity of material of the unconstrained approach is positive (eMM = 0.004, see Table 4), hence implying a 

perverse slightly positively sloping demand function. Instead, the preferred string approach produces a 

downward sloping demand function for material with an own price elasticity of -.12.  

3.3 Is the KLEM data consistent with duality theory?  

3.3.1 Testing Duality Theory using regionally regular estimators 
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For the KLEM data set, Section 3.1 demonstrated that regularity-imposing estimators are required to 

make the empirical model consistent with the assumed underlying economic theory. Forcing the data into such 

theoretical relationships should raise serious concerns, however. In order to investigate this issue, we propose 

to perform the following simple hypothesis test. We test the unrestricted estimate bu (Table 3, column 1) 

against the hypothesis of ‘economic theory19’. The null of ‘economic theory’ hypothesis is represented by the 

regionally regular estimate brr of the string approach (since brr, (column 8) satisfies all shape restrictions, the 

model c(z,brr) is consistent with duality theory). F, Wald and Likelihood Ratio tests (with Bartlett correction) 

are carried out comparing bu with brr. The duality theory hypothesis is not rejected by any test at the 5% 

significance levels. Similarly, one can perform this test in the Bayesian framework20. Using the uninformative 

Bayes factor of 1, the posterior odd ratio in favor of the well-behaved model is 0.874 (Zellner, 1971).21 This 

leads to the conclusion that the KLEM data in deed could have been generated by an underlying cost function 

that is consistent with economic theory.  

An alternative is to report the percentage of data points where regularity violations occur. This 

percentage, however, should not be interpreted as a test statistic. For example, despite the fact that the 

hypothesis tests cannot reject the regular model, our unconstrained estimate violates regularity at 100% of the 

data points (see column (3) of Table 3).  

3.3.2 Testing problems using standard estimators 

In the above section we compared the unrestricted estimate bu with regionally regular estimate brr. 

Assume for a moment that no regional regular estimator were available (as was the case prior to Terrell, 

19 Here ‘economic theory’ is defined as the cost function maintaining the shape conditions of Mp,y and Cp,y. 
20 The Classical point estimate is exactly identical to the above defined Bayesian point estimate β(mode) if, as we have done 
above, an uninformative prior distribution on ΘR|ψ is employed.  The Bayesian interpretation has computational 
advantages because the finite sample confidence intervals and standard errors of functions of β can be directly computed 
with the MCMC draws. Instead deriving the Classical distributions could be tremendously challenging and in general 
requires more time intensive numerical procedures (like bootstrapping). The computational burden is mainly due to the 
many inequality constraints i ≥ 0 which have to hold for all z ∈ ψ. Also since β(mode)

 could lie on the boundary of ΘR|ψ 
further complications arise (see Geweke 1986, Andrews 1999, 2001).  
21 An alternative is to report the percentage of data points where regularity violations occur. This percentage, however, 
should not be interpreted as a test statistic. For example, despite the fact that the hypothesis tests cannot reject the regular 
model, our unconstrained estimate violates regularity at 100% of the data points.  
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1996). The analyst must hence use the globally regular parameter bgr (column 2b) to represent the null of 

duality theory. Testing bu against bgr however leads to over-rejection. This is due to the fact that bgr is a 

member of the much smaller subset ΘR|ℜ+
2+N  ⊂ ΘR|ψ. To show this fact for the KLEM data, we repeat the 

above procedure (from Section 3.3.1) by testing bu against bgr. In stark contrast to the above findings, here the 

F, Wald and Likelihood ratio test results would lead to the erroneous conclusion that the KLEM data is not 

consistent with duality theory. With only 0.189 in favor of the well-behaved model, the Bayesian posterior odd 

gives the same result.  

In conclusion, using modern shape-imposing techniques provides evidence that the KLEM data is 

consistent with duality theory. Instead, using standard econometric methods creates an unfortunate divide 

between the empirical model and the underlying economic theory. The regional regularity preserving 

estimators can close this gap.  

 

4. CONCLUSION 

Behavioural assumptions are the central building blocks of many economic theories, such as the 

assumption of profit or utility maximization. One critical implication of these assumptions is that they 

manifest themselves in the form of uniquely defined ‘shape conditions’. Well-known examples are curvature 

and monotonicity restrictions that apply to indirect utility, expenditure, production, profit, and cost 

functions. Unfortunately, estimated functions frequently violate these regularity conditions. Clearly, such a 

gap between economic theory and the empirical model is problematic for the interpretability of the results, and 

especially worrisome if one wishes to derive policy recommendations. In view of both, the need to produce 

theoretically consistent models and the empirical difficulties in implementation, Diewert and Wales (1987) 

observe: One of the most vexing problems applied economists have encountered is that theoretical curvature 

conditions that are implied by economic theory are frequently not satisfied by the estimated cost, profit or 

indirect utility function. 

By reviewing and applying a series of shape imposing techniques to the estimation of the U.S. input 
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demand system, using the “Berndt and Wood” data, this paper makes the following contributions: First, 

existing work either do not impose all the shape restrictions implied by economic theory or partially impose 

restrictions globally or locally. This paper is the first empirical paper that imposes all the shape restrictions 

simultaneously. This becomes feasible because of adopting the more flexible regional shape-preserving 

techniques developed by Gallant and Golub (1984) and Terrell (1996) as well as recently enhanced by Wolff et 

al. (2010).  Second, this paper investigates how careful estimator selection helps eliminate the wedge 

between the empirical model and economic theory. In particular, this paper motivates a testing procedure 

that checks the plausibility of the assumed economic theory. The main finding is that the class of regional 

regularity estimators successfully produce an empirical demand system that is entirely consistent with the 

underlying economic theory, for a dataset that traditionally rejected economic theory when standard 

econometric approaches have been used. Third, we illustrate policy implications by assessing distributions 

of elasticities and find that the choice of estimator has severe implications on whether energy and capital are 

complements or substitutes. Finally, we show how recent advances to extend the regional approach to non-

convex sets substantially improves the model fit and tractability by dramatically reducing computing time.  

These estimation and inference procedures can be extended to other areas of economics. For example 

the method could be applied to the estimation of producer supply or consumer demand systems, which have 

multiple underlying shape conditions implied by economic theory. Equivalently, many functional relations in 

game theoretic, industrial organization and auction models exhibit curvature, quasi-convexity or monotonicity 

restrictions. It would also be interesting to compare these estimation results with the developing new 

techniques in nonparametric estimation that impose and test for shape restrictions (see Matzkin 1994, Tripathi 

2000, Aït-Sahalia and Duarte 2003, and Henderson et al. 2012). This is to be explored in future research. It is 

hoped that the methods demonstrated in this paper promote tractability and facilitate the analysis of empirical 

models for which consistency with an underlying economic theory is required.  

 

 
 

28 



APPENDIX 

Appendix I: Regional Imposition of Shape Restrictions via Numerical Integration  

 The distribution of interest is the regularity censored likelihood or posterior p(β|y,ψ), which 

depends on ψ.22 To generate outcomes from p(β|y,ψ) either a Gibbs sampler can be used, or based on 

Griffiths, O'Donnell and Tan-Cruz (2000) the Metropolis-Hastings Accept Reject Algorithm (MHARA) can 

be used to generate J (pseudo-) random outcomes, b(j), j = 1,…,J from p(β|y,ψ) on the regular support 

ΘR|ψ = {β: i(p;β) ≥ 0 ∀ z ∈ ψ}. To account for the regularity condition {β ∈ ΘR|ψ}, the simulator must 

ensure that any drawn parameter vector b(j) implies regularity of c(z;b(j)) for every point z in the predefined set 

ψ, i.e. b(j) ∈ ΘR|ψ ∀ j. Since there are an infinite number of points in ψ, they cannot all be checked explicitly. 

The connectedness is approximated by a fine grid, denoted by the disconnected set ψg ⊂ ψ. Within the Gibbs 

or Metropolis Hastings chain an additional Accept-Reject algorithm is implemented to guarantee that ∀ b(j) the 

regularity conditions hold for any single grid point. This implies that b(j) ∈ ΘR|ψg ∀ j, whereby ΘR|ψg is the 

approximated regularity likelihood (or—in the Bayesian context—posterior) support, which will tend toward 

the actual set ΘR|ψ the finer the approximation grid ψg.  

Appendix II: Approximating ψ 

Case 1: ψ as hypercube  

In the simplest setting ψ□ is a hypercube (the superscript □ refers to the cube approach): Let zi(ψmin) 

and zi(ψmax) represent the minimum and maximum of the i-th right hand side variable. The grid is constructed 

by selecting F = 10 equidistant values for each variable: zf
i = zi(ψmin) + (f-1)F-1(zi(ψmax)-zi(ψmin)) ∀ f ∈ {1,2,…, 

F} and using all possible Q = 106 = Fdim(z) combinations to generate the Q-grid ψ□
g ⊂ ψ□. In order to 

circumvent the approximate nature of this representation, Wolff et al. 2010 identified conditions under which 

22 Let Θ be the K-dimensional parameter space. If all regularity conditions hold for all values of z in ψ, the regular 
parameter set is defined as ΘR|ψ = {β∈Θ: i(p;β) ≥ 0 ∀ z ∈ ψ}, hence ΘR|ψ is dependent on the choice of ψ. The marginal 
prior on β is specified as an indicator function p(β|ψ) = {β ∈ ΘR|ψ} where the prior equals 1 if regularity holds at the 
value β ∀ z ∈ ψ, and equals 0 otherwise. Throughout the paper we assume the standard ignorance prior for the N × N 
covariance matrix |Σ|-(N+1)/2. The posterior distribution for β is then derived by applying Bayes rule, p(β|y,ψ) ∝ ∫L(β,Σ|y)⋅ 
{β ∈ ΘR|ψ}⋅ |Σ|-(N+1)/2dΣ, where L(β,Σ|y) is the normal likelihood function. 
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checking a certain key point in ψ□ guarantees regularity in well defined neighborhood. Following this 

procedure leads to a reduction in regularity checks to a total of Q* = 343900 < Q = 106.  

Case 2: ψ as a string.  

The reduction of regularity checks can be further enhanced by constructing nonconvex sets: with T = 

25 observations and S=10 out of sample forecasts S=10, the number of regularity checks is reduced to occur, 

at 316 = 1+(F-1)(T+S) grid points only in the string approach.  

Point estimates and the relation to Maximum Simulated Normal Likelihood 

 The described techniques can be applied to the Bayesian and to the Classical frameworks. In the 

Classical framework one would maximize a likelihood function subject to the inequality constraints and the 

numerical point estimate of the maximum simulated likelihood is the mode. This Classical mode is exactly 

identical to the above defined Bayesian point estimate β(mode) if, as we have done above, an uninformative prior 

distribution on ΘR|ψ is employed.  
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